Biological Co2 Fixation to Antioxidant Carotenoids by Photosynthesis Using the Green Microalga Haematococcus pluvialis

광합성 녹색 미세조류 Haematococcus pluvialis를 이용한 이산화탄소 고정화 및 항산화성 카로티노이드 생산

  • Kang, Chang Duk (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Tai Hyun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Sim, Sang Jun (Department of Chemical Engineering, Sungkyunkwan University)
  • 강창덕 (서울대학교 화학생물공학부) ;
  • 박태현 (서울대학교 화학생물공학부) ;
  • 심상준 (성균관대학교 화학공학과)
  • Received : 2005.11.29
  • Accepted : 2005.12.28
  • Published : 2006.02.28

Abstract

As one of the $CO_2$ reduction strategies, a biological method was proposed to convert $CO_2$ to useful biomass with antioxidant carotenoids by photosynthetic microorganisms. One of the photoautotrophs, Haematococcus pluvialis is a freshwater green microalga and accumulates the secondary carotenoid astaxanthin during induction of green vegetative cells to red cyst cells. In this study, $CO_2$ fixation and astaxanthin production using H. pluvialis was conducted by photoautotrophic culture in the $CO_2$ supplemented photo-incubator. Maximum growth rate of H. pluvialis was obtained at a 5% $CO_2$ environment on basic N and P conditions of NIES-C medium. The photoautotrophic induction consisted of 5% $CO_2$ supply and high light illumination promoted astaxanthin synthesis in H. pluvialis, yielding an astaxanthin productivity of $9.6mg/L{\cdot}day$ and a $CO_2$ conversion rate of $27.8mg/L{\cdot}day$ to astaxanthin. From the results the sequential photoautotrophic culture and induction process using H. pluvialis is expecting an alternative $CO_2$ reduction technology with a function of valuable biosubstance production.

광합성 미생물을 이용하여 $CO_2$를 항산화성 카로티노이드를 다량 함유하고 있는 바이오매스로 전환하는 새로운 방법의 생물학적 $CO_2$ 저감 기술이 제시되었다. 본 연구에서 담수 녹색 미세 조류인 Haematococcus pluvialis가 광합성 미생물로 사용되었으며, 이 균주는 녹색의 성장 세포에서 적색의 포낭 세포로 전환될 때 2차 카로티노이드인 astaxanthin을 세포 내에 다량 축적하는 것으로 알려졌다. 균주의 이러한 특성을 이용하여 $CO_2$가 연속적으로 공급되는 광 반응기에서 자가 영양 배양 방식으로 $CO_2$ 고정화 및 그것을 통한 astaxanthin 생산 연구가 수행되었다. 녹색 성장 세포의 성장은 5% $CO_2$ 공급 환경 및 기본 NIES-C 배지에서 최대로 이루어졌다. 적색 포낭 세포로 효과적인 전환을 위해 5% $CO_2$ 주입과 강한 빛 조사로 이루어진 자가 영양 유도법을 적용하였으며, 이 공정을 통해 $9.6mg/L{\cdot}day$의 astaxanthin 생산성을 획득하였다. 이때 astaxanthin으로 전환되는 $CO_2$의 균주 내 고정화 속도는 $27.8mg/L{\cdot}day$로 나타났다. 본 연구를 통해 제시된 H. pluvialis를 이용한 자가 영양 배양, 유도 공정은 $CO_2$ 고정화뿐만 아니라 고부가 생리 물질 생산기능을 겸비하여 새로운 $CO_2$ 저감기술로 적용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

Supported by : 과학기술부

References

  1. http://www.cdrs.re.kr/research_develop/outline.htm
  2. Kodama, M., Ikemoto, H. and Miyachi, S., 'A New Species of Highly $CO_{2}$ Tolerant Fast Growing Marine Microalga Suitable for High Density Culture,' J. Mar. Biotechnol., 1, 21-25(1993)
  3. Zhang, K., Miyachi, S. and Kurano, N., 'Photosynthetic Performance of a Cyanobacterium in a Vertical Flat-Plate Photobioreactor for Outdoor Microalgal Production and Fixation of $CO_{2}$,' Biotechnol. Lett., 23, 21-26(2001) https://doi.org/10.1023/A:1026737000160
  4. Kobayashi, M. and Sakamoto, Y., 'Singlet Oxygen Quenching Ability of Astaxanthin Esters from the Green Alga Haematococcus pluvialis,' Biotechnol. Lett., 21, 265-269(1999) https://doi.org/10.1023/A:1005445927433
  5. Margalith, P. Z., 'Production of Ketocarotenoids by Microalgae,' Appl. Microbiol. Biotechnol., 51, 431-438(1999) https://doi.org/10.1007/s002530051413
  6. Guerin, M., Huntley, M. E. and Olaizola, M., 'Haematococcus Astaxanthin; Applications for Human Health and Nutrition,' Trends Biotechnol., 21(5), 210-216(2003) https://doi.org/10.1016/S0167-7799(03)00078-7
  7. Kobayashi, M., Kakizono, T. and Nagai, S., 'Astaxanthin Production by a Green Alga, Haematococcus pluvialis Accompanied with Morphological Changes in Acetate Media,' J. Ferment. Bioeng., 71(5), 335-339(1991) https://doi.org/10.1016/0922-338X(91)90346-I
  8. Boussiba, S., 'Carotenogenesis in the Green Alga Haematococcus pluvialis: Cellular Physiology and Stress Response,' Physiol. Plant, 108, 111-117(2000) https://doi.org/10.1034/j.1399-3054.2000.108002111.x
  9. Fábregas, J., Domínguez, A., Maseda, A. and Otero, A., 'Interactions Between Irradiance and Nutrient Availability During Astaxanthin Accumulation and Degradation in Haematococcus pluvialis,' Appl. Microbiol. Biotechnol., 61, 545-551(2003) https://doi.org/10.1007/s00253-002-1204-4
  10. Kobayashi, M., Kakizono, T. and Nagai, S., 'Enhanced Carotenoids Biosynthesis by Oxidative Stress in Acetate-induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis,' Appl. Environ. Microbiol., 59(3), 867-873(1993)
  11. Kobayashi, M., Kurimura, Y. and Tsuji, Y., 'Light Independent, Astaxanthin Production by the Green Microalga Haematococcus pluvialis Under Salt Stress,' Biotechnol. Lett., 19(6), 507-509(1997) https://doi.org/10.1023/A:1018372900649
  12. Sarada, R., Tripathi, U. and Ravishankar, G. A., 'Influence of Stress on Astaxanthin Production in Haematococcus pluvialis Grown Under Different Culture Conditions,' Process Biochem., 37, 623-627(2002) https://doi.org/10.1016/S0032-9592(01)00246-1
  13. Fábregas, J., Domínguez, A., Álvareza, D. C., Lamela, T. and Otero, A., 'Induction of Astaxanthin Accumulation by Nitrogen and Magnesium Deficiencies in Haematococcus pluvialis,' Biotechnol. Lett., 20(6), 623-626(1998) https://doi.org/10.1023/A:1005322416796
  14. Fábregas, J., Otero, A., Maseda, A. and Domínguez, A., 'Two Stage Cultures for the Production of Astaxanthin from Haematococcus pluvialis,' J. Biotechnol., 89, 65-71(2001) https://doi.org/10.1016/S0168-1656(01)00289-9
  15. Hata, N., Ogbonna, J. C., Hasegawa, Y., Taroda, H. and Tanaka, H., 'Production of Astaxanthin by Haematococcus pluvialis in a Sequential Heterotrophic-Photoautotrophic Culture,' J. Appl. Phycol., 13, 395-402(2001) https://doi.org/10.1023/A:1011921329568
  16. Kakizono, T., Kobayashi, M. and Nagai, S., 'Effect of Carbon/ nitrogen Ratio on Encystment Accompanied with Astaxanthin Formation in a Green Alga, Haematococcus pluvialis,' J. Ferment. Bioeng., 74(6), 403-405(1992) https://doi.org/10.1016/0922-338X(92)90041-R
  17. Orosa, M., Franqueira, D., Cid, A. and Abalde, J., 'Carotenoid Accumulation in Haematococcus pluvialis in Mixotrophic Growth,' Biotechnol. Lett., 23, 373-378(2001) https://doi.org/10.1023/A:1005624005229
  18. Orosa, M., Franqueira, D., Cid, A. and Abalde, J., 'Analysis and Enhancement of Astaxanthin Accumulation in Haematococcus pluvialis,' Bioresour. Technol., 96, 373-378(2005) https://doi.org/10.1016/j.biortech.2004.04.006
  19. Dominguez-Bocanegra, A. R., Legarreta, I. G., Jeronimo, F. M. and Campocosio, A. T., 'Influence of Environmental and Nutritional Factors in the Production of Astaxanthin from Haematococcus pluvialis,' Bioresour. Technol., 92, 209-214(2004) https://doi.org/10.1016/j.biortech.2003.04.001
  20. Wellburn, A. R., 'The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution,' J. Plant Physiol., 144, 307-313(1994) https://doi.org/10.1016/S0176-1617(11)81192-2
  21. Yuan, J. P. and Chen, F., 'Purification of Trans-Astaxanthin from a High-Yielding Astaxanthin Ester-Producing Strain of the Microalga Haematococcus pluvialis', Food Chem., 68, 443-448(2000) https://doi.org/10.1016/S0308-8146(99)00219-8
  22. Yuan, J. P. and Chen, F., 'Chromatographic Separation and Purification of Trans-Astaxanthin from the Extracts of Haematococcus pluvialis,' J. Agric. Food Chem., 46, 3371-3375(1998) https://doi.org/10.1021/jf980039b
  23. Wang, B. and Zarka, A., 'Astaxanthin Accumulation in Haematococcus pluvialis (Chlorophyceae) as an Active Protective Process Under High Irradiance,' J. Phycol., 39, 1116-1124(2003) https://doi.org/10.1111/j.0022-3646.2003.03-043.x