• Title/Summary/Keyword: $CO_2$ utilization

Search Result 627, Processing Time 0.036 seconds

Mitigating Metal-dissolution in a High-voltage 15 wt% Si-Graphite‖Li-rich Layered Oxide Full-Cell Utilizing Fluorinated Dual-Additives

  • Kim, Jaeram;Kwak, Sehyun;Pham, Hieu Quang;Jo, Hyuntak;Jeon, Do-Man;Yang, A-Reum;Song, Seung-Wan
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.269-278
    • /
    • 2022
  • Utilization of high-voltage electrolyte additive(s) at a small fraction is a cost-effective strategy for a good solid electrolyte interphase (SEI) formation and performance improvement of a lithium-rich layered oxide-based high-energy lithium-ion cell by avoiding the occurrence of metal-dissolution that is one of the failure modes. To mitigate metal-dissolution, we explored fluorinated dual-additives of fluoroethylene carbonate (FEC) and di(2,2,2-trifluoroethyl)carbonate (DFDEC) for building-up of a good SEI in a 4.7 V full-cell that consists of high-capacity silicon-graphite composite (15 wt% Si/C/CF/C-graphite) anode and Li1.13Mn0.463Ni0.203Co0.203O2 (LMNC) cathode. The full-cell including optimum fractions of dual-additives shows increased capacity to 228 mAhg-1 at 0.2C and improved performance from the one in the base electrolyte. Surface analysis results find that the SEI stabilization of LMNC cathode induced by dual-additives leads to a suppression of soluble Mn2+-O formation at cathode surface, mitigating metal-dissolution event and crack formation as well as structural degradation. The SEI and structure of Si/C/CF/C-graphite anode is also stabilized by the effects of dual-additives, contributing to performance improvement. The data give insight into a basic understanding of cathode-electrolyte and anode-electrolyte interfacial processes and cathode-anode interaction that are critical factors affecting full-cell performance.

Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats

  • Kyun, Sunghwan;Yoo, Choongsung;Hashimoto, Takeshi;Tomi, Hironori;Teramoto, Noboru;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.1-5
    • /
    • 2020
  • [Purpose] Lactate has several beneficial roles as an energy resource and in metabolism. However, studies on the effects of oral administration of lactate on fat metabolism and glycogen synthesis are limited. Therefore, the purpose of the present study was to investigate how oral administration of lactate affects fat metabolism and glycogen synthesis factors at specific times (0, 30, 60, 120 min) after intake. [Methods] Male Sprague Dawley (SD) rats (n = 24) were divided into four groups as follows: the control group (0 min) was sacrificed immediately after oral lactate administration; the test groups were administered lactate (2 g/kg) and sacrificed after 30, 60, and 120 min. Skeletal muscle and liver mRNA expression of GLUT4, FAT/CD36, PDH, CS, PC and GYS2 was assessed using reverse transcription-polymerase chain reaction. [Results] GLUT4 and FAT/CD36 expression was significantly increased in skeletal muscle 120 min after lactate administration. PDH expression in skeletal muscle was altered at 30 and 120 min after lactate consumption, but was not significantly different compared to the control. CS, PC and GYS2 expression in liver was increased 60 min after lactate administration. [Conclusion] Our results indicate that exogenous lactate administration increases GLUT4 and FAT/CD36 expression in the muscle as well as glycogen synthase factors (PC, GYS2) in the liver after 60 min. Therefore, lactate supplementation may increase fat utilization as well as induce positive effects on glycogen synthesis in athletes.

Changes of the Substances during Composting of Industrial Wastewater Sludge (공단폐수슬러지의 퇴비화과정 중 물질변환)

  • Lee, Hong-Jae;Cho, Ju-Sik;Lee, Sung-Tae;Heo, Jong-Su
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.5 no.2
    • /
    • pp.17-28
    • /
    • 1997
  • To study the possibility of agricultural utilization of industrial wastewater sludge, the changes of the substances, such as temperature, pH, inorganic and organic matter, the form of nitrogen, fatty acid and the population number of microorganisms during composting periods were investigated. Temperature and $CO_2$ generation were the highest in the second day of composting peroids, and then were gradually fallen. And they were similar to room temperature after the sixth day of composting periods. C/N ratio was a little increased as time went by. pH value was not changed in early composting periods and then pH had been gradually decreased since it was rapidly increased. It was in the range of 8.7~8.8 in late composting periods. The contents of $P_2O_5$, $K_2O$, CaO, MgO and Fe were a little increased and that of ${SO_4}^{2-}$ was increased with 62~67% in late in comparing with early composting periods. The contents of ether extracted materials, water soluble polysaccharides, hemicellulose and cellulose were decreased but that of resins and lignin were not changed during composting periods. The contents of total and organic nitrogen were decreased but that of inorganic nitrogen was increased during composting periods. The population number of microorganism during composting periods was too much changed according to the kinds of bulking agents and microorganisms, and the composting periods.

  • PDF

The Development of Korean Life Cycle Impact Assessment Index Based on a Damage Oriented Modeling (한국형 피해산정형 전과정 영향평가 지표 개발)

  • Park, Pil-Ju;Kim, Mann-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.5
    • /
    • pp.499-508
    • /
    • 2010
  • This study proposed a life cycle impact assessment index that can indicate the environment-related information of the product in monetary value such that the national geographical, environmental, and social features are fully reflected based on a damage-oriented model. First, the estimation process was classified into characterization, damage assessment, and integration stages considering the six biggest impact categories: resource depletion, global warming, ozone depletion, acidification, eutrophication, and photochemical oxidant creation. Moreover, this study came up with the 16 category endpoints related to the 6 impact categories, and the damage function, to the 4 largest safeguard subjects. The integration indices of finally identified impact categories were KRW 21.8/kg Sb, KRW 6.19/kg$CO_2$, KRW 53,000/kg CFC-11, KRW 13,100/kg $SO_2$, KRW 2,310/kg ${PO_4}^{3-}$, and KRW 3,030/kg $C_2H_4$. Using the results of this research, environmental impacts based on the environmental load generated throughout the entire life cycle of a product can serve as a single index in monetary value; thus enhancing understanding and utilization of the results of life cycle impact assessments.

A Study on the Efficient Utilization of Aquaculture Greenhouse by Paralleling Vegetable Nutrient Culture Systems (채소 수경재배체계 도입에 의한 양어시설의 효율적 이용에 관한 연구)

  • 이병일;이지원;김기덕;이순길;정선부
    • Journal of Bio-Environment Control
    • /
    • v.1 no.2
    • /
    • pp.123-134
    • /
    • 1992
  • In order to verify the usability of the greenhouse for aquaculture with nutrient culture synchronously and to obtain the fundamental data fir the establishment of efficient farming technology, the characteristics of microclimate and the growth of leafy vegetables were examined. Tilapia averaged 428.6 g grew to 784 g(1.83 times) for 147 days from May 29 to Oct. 21 and fingerlings averaged 12.9 g grew by 1.37 times for 61 days from Sep. 13 to Nov. 12. The growth of vegetables such as water dropwort, leaf lettuce, Chinese cabbage, and Welsh onion in the greenhouse was better for aquaculture with nutrient culture than for nutrient culture only. Between above two greenhouses, pH and EC of nutrient solution was same but the temperature different by about 2$^{\circ}C$. Average day temperature, relative humidity, and $CO_2$ concentration were higher by 2.9$^{\circ}C$, 6%, and 200 ppm in the greenhouse for aquaculture with nutrient culture, respectively. Net assimilation rate of vegetables in the greenhouse was a little higher for aquaculture with nutrient culture than for nutrient culture only. Therefore, provided aquaculture and nutrient culture are carried out in the same greenhouse, the saving effect of heating cost as well as the additional promotive effects of vegetable and tilapia growth can be obtained.

  • PDF

Quality characteristics of Aster glehni extract depending on the concentration and time of enzyme treatment (효소처리 농도 및 시간에 따른 섬쑥부쟁이 추출물의 품질 특성)

  • Sun Hwa Kim;Sung Ran Yoon;Yong-Jin Jeong
    • Food Science and Preservation
    • /
    • v.30 no.4
    • /
    • pp.654-662
    • /
    • 2023
  • The Aster glehni extract has many therapeutic and medicinal values. Therefore, it is essential to set appropriate conditions for enzyme treatment to efficiently extract A. glehni. In this study, changes in the quality of A. glehni extract depending on the concentration and time of enzyme treatment was investigated to increase its effective utilization. Compared to the control, the pH of the extract of A. glehni its soluble solid content increased with the enzyme treatment. The color of the A. glehni extract changed from green-yellow to reddish-yellow with the increase in treatment duration. The fructose and sucrose contents of the extract were the highest at 7.73% and 6.78%, respectively, in the control group without the enzyme treatment. Glucose and maltose contents were 6.91% and 4.44% in the C group (3.2% enzyme concentration and 60 min for enzyme treatment), respectively. Total polyphenol content, which shows antioxidant activity, was the highest at 7.38 mg GAE/g in the E group (1.6% of enzyme concentration and 120 min for enzyme treatment). 2,2-diphenylpicrylhydrazyl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) showed the highest radical scavenging activity in the C group (3.2% of enzyme concentration and 60 min for enzyme treatment). These results enable setting appropriate conditions of enzyme treatment in terms of enzyme concentration and time for the production of dry powders using A. glehni extract.

Utilization of Various Electron Acceptors in Shewanella putrefaciens DK-l (Shewanella putrefaciens DK-1의 Fe(III) 환원 특성)

  • 조아영;이일규;전은형;안태영
    • Korean Journal of Microbiology
    • /
    • v.39 no.3
    • /
    • pp.175-180
    • /
    • 2003
  • Microbial Fe(III) reduction is an important factor for biogeochemical cycle in anaerobic environments, especially sediment of freshwater such as lakes, ponds and rivers. In addition, the Fe(III) reduction serves as a model for potential mechanisms for the oxidation of organic compounds and the reduction of toxic heavy metals, such as chrome or uranium. Shewanella putrefaciens DK-1 was a gram-negative, facultative anaerobic Fe(III) reducer and used ferric ion as a terminal electron acceptor for the oxidation of organic compounds to $CO_{2}$ or other oxidized metabolites. The ability of reducing activity and utilization of various electron acceptors and donors for S. putrefaciens DK-1 were investigated. S. putrefaciens DK-1 was capable of using a wide variety of electron acceptor, including $NO_{3}^{-}$, Fe(III), AQDS, and Mn(IV). However, its ability to utilize electron donors was limited. Lactate and formate were used as electron donors but acetate and toluene were not used. Fe(III) reduction of S. putrefaciens DK-l was inhibited by the presence of either $NO_{3}^{-}$ or $NO_{2}^{-}$. Further S. putrefaciens DK-1 used humic acid as an electron acceptor and humic acid was re-oxidized by nitrate. Environmental samples showing the Fe(III)-reducing activity were used to investigate effects of the limiting factors such as carbon, nitrogen and phosphorus on the Fe(III) reducing bacteria. The highest Fe (III) reducing activity was measured, when lactate as a carbon source and S. putrefaciens DK-1 as an Fe(III) reducer added in untreated sediment samples of Cheon-ho and Dae-ho reservoirs.

Estimation of Kinetic Parameters for Biomass Growth Using Micro-nano Bubbles Reactor (마이크로-나노버블 반응조를 이용한 미생물성장 동력학 계수의 추정에 관한 연구)

  • Han, Young-Rip;Jung, Byung-Gil;Jung, Yoo-Jin;Cho, Do-Hyun;Sung, Nak-Chang
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.647-653
    • /
    • 2010
  • The objectives of this research are to evaluate and compare the oxygen transfer coefficients($K_{La}$) in both a general bubbles reactor and a micro-nano bubbles reactor for effective operation in sewage treatment plants, and to understand the effect on microbial kinetic parameters of biomass growth for optimal biological treatment in sewage treatment plants when the micro-nano bubbles reactor is applied. Oxygen transfer coefficients($K_{La}$) of tap water and effluent of primary clarifier were determined. The oxygen transfer coefficients of the tap water for the general bubbles reactor and micro-nano bubbles reactor were found to be 0.28 $hr^{-1}$ and 2.50 $hr^{-1}$, respectively. The oxygen transfer coefficients of the effluent of the primary clarifier for the general bubbles reactor and micro-nano bubbles reactor were found be to 0.15 $hr^{-1}$ and 0.91 $hr^{-1}$, respectively. In order to figure out kinetic parameters of biomass growth for the general bubbles reactor and micro-nano bubbles reactor, oxygen uptake rates(OURs) in the saturated effluent of the primary clarifier were measured with the general bubbles reactor and micro-nano bubbles reactor. The OURs of in the saturated effluent of the primary clarifier with the general bubbles reactor and micro-nano bubbles reactor were 0.0294 mg $O_2/L{\cdot}hr$ and 0.0465 mg $O_2/L{\cdot}hr$, respectively. The higher micro-nano bubbles reactor's oxygen transfer coefficient increases the OURs. In addition, the maximum readily biodegradable substrate utilization rates($K_{ms}$) for the general bubbles reactor and micro-nano bubbles reactor were 3.41 mg COD utilized/mg active VSS day and 7.07 mg COD utilized/mg active VSS day, respectively. The maximum specific biomass growth rates for heterotrophic biomass(${\mu}_{max}$) were calculated by both values of yield for heterotrophic biomass($Y_H$) and the maximum readily biodegradable substrate utilization rates($K_{ms}$). The values of ${\mu}_{max}$ for the general bubbles reactor and micro-nano bubbles reactor were 1.62 $day^{-1}$ and 3.36 $day^{-1}$, respectively. The reported results show that the micro-nano bubbles reactor increased air-liquid contact area. This method could remove dissolved organic matters and nutrients efficiently and effectively.

Studies on the Microencapsulation of ${\omega}-3$ Polyunsaturated Fatty Acid (${\omega}-3$계 지방산의 미세캡슬화에 관한 연구)

  • Kim, Chul-Hyun;Lee, Kyung-Wook;Baick, Seung-Chun;Kwak, Hae-Soo;Kang, Jong-Ok
    • Korean Journal of Food Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.743-749
    • /
    • 1996
  • This study was carried out to investigate the microencapsulatuion of ${\omega}-3$ fatty acid isolated from fish oil and to obtain fundamental information on the utilization of the ${\omega}-3$ fatty acid in the dairy foods field. To obtain the desirable microencapsulation efficiency, 1.5% agar and 0.5% gelatin were used as coating materials, and 0.5% SFAN 60 (HLB 4.5 value) was used to maintain the emulsion stability. The optimal mixing ratio of coating material to core material was 8:2 (w/w). The thermostability of microencapsulated product was not maintained above $60^{\circ}C$. Microencapsulation efficiency was kept at about 90% at $4^{\circ}C$ and $10^{\circ}C$ for 7 days storage at various temperatures. At $20^{\circ}C$ and $30^{\circ}C$, however, about 80% microencapsulatuion efficiency was obtained for 3 days storage. About 80.57% microcapsule was destroyed by 1%> pepsin solution at $37^{\circ}C$ for 10 min.

  • PDF

Synthesis and Properties of Nonlinear Optical Polymer Derived from α-Methyl Styrene/Maleic Anhydride by Polymer Reaction (고분자 반응을 이용한 Maleic anhydride계 비선형 광학 고분자의 합성 및 전기광학 특성)

  • Park, Lee Soon;Keum, Chang Dae;Song, Jae Won;Kim, Kwang Taek;Kim, Gi Heon;Kang, Shin Won
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.704-709
    • /
    • 1998
  • Non-linear optical polymer based on poly (${\alpha}$-methylstyrene-co-maleic anhydride) (MSMA) substrate polymer was prepared by polymer reaction method and its thermal and electro-optic properties were examined. In the polymer reaction between MSMA substrate polymer and 2-[4-(4-nitrophenylazo)-N-ethylphenylamino]ethanol (DR1) chromophore, the degree of substitution of DR1 into MSMA was higher with the 4-dimethylaminopyridine (DMAP) as catalyst and 3-dicyclohexyl carbodiimide (DCC) as dehydrating agent (sample, MSMA-DC) than the one with just 4-dimethylaminopyridine as catalyst (sample, MSMA-D). The synthesized NLO polymer (MSMA-DC) exhibited electro-optic coefficient of 18 pm/V (632.8 nm) and glass transition temperature ($T_g$) of about $175^{\circ}C$.

  • PDF