• Title/Summary/Keyword: $CO_2$ thermal system

Search Result 469, Processing Time 0.028 seconds

An Experimental Study on the Ground Source Heat Pump System for Heating Economic Efficiency and Reduction Amount of $CO_2$ (지열 시스템의 난방 경제성 및 $CO_2$ 절감 실증 연구)

  • Nam, Leem-Woo;Paek, Gi-Dong
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.25-30
    • /
    • 2007
  • The final energy consumption in the building sector in Korea represents almost 20% of the total energy consumption. Besides, Space heating and hot water generation in Korea are based on fossil fuels, with a serious environmental impact. This study describes thermal performance of heating demonstration system using close-loop ground source heat pump installed at Korean minjok leadership academy. The results of the experimental study, it retrieve the investment cost for 3years 8months and reduction amount of $CO_2$are 293,900 $kgCO_2$.

  • PDF

Effects of Green Wall System Controling Indoor Thermal Environments and Carbon Dioxide (벽면 녹화가 실내 온열환경 및 이산화탄소 농도 조절에 미치는 영향)

  • Sin, Junghwan;Kim, Hwanyi;Kim, Sughwan;Kim, Sumin;Chang, Jae D.
    • Journal of the Korea Furniture Society
    • /
    • v.25 no.2
    • /
    • pp.148-153
    • /
    • 2014
  • Importance of energy consumptions has being emphasized because of problems of the energy and environment. So, recently, green wall systems have been installed to reduce building energy consumptions. The green wall systems provide several benefits; they make it possible to maintain moderate thermal comforts by greenery. Greening such a surface wall in the building by plants, the temperature of the wall can be properly controlled that purifies the air and improves the view spanning over the space. This study evaluated the effects of green wall systems on reducing room temperature quantitatively, changing of humidity, decreasing of $CO_2$. Test results were confirmed; first, the space installed by green walls showed that temperature and $CO_2$ decreased and humidity was increased. Second, two structures were compared with the solar radiation, and green wall systems controlled the temperature and humidity stably near the wall regardless of the amount solar radiation. In conclusion, the green wall systems can contribute to thermal comforts and indoor air quality in the buildings.

  • PDF

Synthesis and Characterization of Poly(L-lactic acid-co-glycine-L-lactic acid) and Poly - ( L-1actic acid-co-gl ycine-L-methyl 1actic acid) (생체분해성 고분자의 합성 및 물성에 관한 연구(II) -Poly (L-lactic acid-co-glycine-L-lactic acid) 와 Poly- (L-lactic acid-co-glycine-L-methyl lactic acid))

  • Sung, Yong-Kiel;Song, Dae-Kyung;Park, Kyung-Hee
    • Journal of Biomedical Engineering Research
    • /
    • v.9 no.2
    • /
    • pp.225-232
    • /
    • 1988
  • Poly (L- lactic acid-co-glycine-L-lactic acid) and Poly (L-lactic acid-co-glycine-L- methyl lactic acid ) have been prepared by ring opening polymerization. The monomer 6, 6-dimethyl morpho-line-2, 5-dione was synthesized by the bromoisobutylation of 2-bromoisobutyryl bromide with glycin e. L-lactide, 6-methyl morpholine-2, 5-diode. and 6, 6-dimethyl morpholine-2, 5-diode have been used as starting materials for polydepsipeptides. The synthesized monomers and copolymers have been identified by NMR and FT-lR spa- ctrophotometer. The thermal propert ies and glass transition temperature(Tg) of the copolymers have been measured by differential scanning calorimetry. The Tg values of poly(L-lactic acid co-glycine-L-lactic acid) system are increased from $53^{\circ}C\; to\; 107^{\circ}C$ with increasing the mole fraction of 6-methyl morpholine-2, 5-diode. And the Tg values of poly(L-lactic acid co-glycine-L-methyl lactic acid) system are increased from $53^{\circ}C\;to\;138^{\circ}C$ with increasing the mole fraction of 6. 6-dimethyl morpholine-2, 5-diode The thermal stability of poly (L-lactic acid-co-glycine-L-methyl lactic acid) is slightly greta text than that of poly(L-lactic acid-co-glycine-L-lactic acid) due to the methyl group.

  • PDF

Comparison of the PMV and $CO_2$ Concentration, Energy Consumption Characteristics of Central Air-Conditioning System and System Air-Conditioner with Ventilation System for Large Space (중형공간에서 중앙공조방식과 시스템에어컨 방식에 따른 PMV와 $CO_2$농도, 에너지소비량 비교)

  • Sung, Sang-Chul;Noh, Kwang-Chul;Chin, Sim-Won;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.298-303
    • /
    • 2008
  • PMV, $CO_2$ and the energy consumption performance were numerically investigated in a large space with air-conditioning systems of four type. The numerical results showed that thermal comforts in the occupied zone are nearly similar in three systems except 3-way wall type system air-conditioner with ventilation system installed 2.2m height from the bottom. In case of 3-way wall type system air-conditioner the energy consumption for cooling loads was reduced about 25.5% compared to other air-conditioning systems. From the viewpoint of IAQ, it was turned out that system air-conditioner with ventilation system became worse about 20% compared to central air-conditioning systems for cooling load. The PMV, $CO_2$ concentration and energy consumption of all systems for heating loads were similar in a large space considered.

  • PDF

A Study on Solid Reaction of BaCO3-TiO2 System (BaCO3-TiO2계의 고상반응에 관한 연구)

  • 이응상;황성연;임대영
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.5
    • /
    • pp.484-490
    • /
    • 1987
  • Diffusion coupling experiment was done to study expansion of body and soild reaction in BaCO3-TiO2 system. Specimen of BaCO3 and TiO2 was formed with Pt-mark's method. Each specimen was fired at interval of 25℃ from 900℃ to 1000℃ for 2hrs. After that, specimen was fixed with resin and polished. Product layers of specimen were observed with SEM and EDS. The result were following; 1. Diffusion component is Ba2+, which diffuse toward TiO2. 2. Large crack between layer of BaCO3 and Ba2TiO4 was generated because of difference of thermal expansion coefficient. 3. Ba2TiO4 is formed to TiO2 body by the reaction of BaTiO3 and BaO and its structure is very porous. 4. BaTiO3 changes immediately to Ba2TiO4 by the reaction of BaO. But BaTiO3 which formed by the reaction of TiO2 and Ba2TiO4 exsists as layer because the diffusion distance of Ba2+ is far.

  • PDF

The Effects of the Installation Conditions of Ground Loop Heat Exchanger to the Thermal Conductivity and Borehole Resistance (지중열교환기 설치 조건이 지중 유효 열전도도와 보어홀 열저항에 미치는 영향)

  • Lim, Hyo-Jae;Kong, Hyoung-Jin;Kang, Sung-Jae;Choi, Jae-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.2
    • /
    • pp.95-102
    • /
    • 2011
  • A ground loop heat exchanger in a ground source heat pump system is an important unit that determines the thermal performance of a system and its initial cost. A proper design requires certain site specific parameters, most importantly the ground effective thermal conductivity, the borehole thermal resistance and the undisturbed ground temperature. This study was performed to investigate the effect of some parameters such as borehole lengths, various grouting materials and U tube configurations on ground effective thermal conductivity and borehole thermal resistance. In this study, thermal response tests were conducted using a testing device to 9 different ground loop heat exchangers. From the experimental results, the length of ground loop heat exchanger affects to the effective thermal conductivity. The results of this experiment shows that higher thermal conductivity of grouting materials leads to the increase effective thermal conductivity from 22 to 32%. Also, mounting spacers have increased by 14%.

The Interaction of CO and W(111) Surface

  • Lee, S. Y.;Kim, Y. D.;Seo, S. N.;Park, C. Y.;Kwak, H. T.;Boo, J. H.;Lee, S. B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.9
    • /
    • pp.1061-1066
    • /
    • 1999
  • The adsorption of CO on W(111) surface in the range of adsorption temperature between 300 K and 1000 K has been studied using AES, LEED, and TDS in an UHV system. After CO saturation at 300 K, four desorption peaks are observed at temperatures (K) of about 400, 850, 1000, and 1100 in thermal desorption spectra, called as α, β1, β2, and β3 state, respectively. The state was attributed to molecular species of CO, which is well known. Because the CO in βstates (especially the β3 state) is still debated as to whether it is dissociative or non-dissociative, the β3 state is mainly discussed. By using the variation method of heating rate in the thermal desorption spectrometry, the desorption energy and pre-exponential factor for the β3 state are evaluated to be 280 kJ/mol and 1.5×10 12 s-1 , respectively. A lateral interaction energy of 5.7 kJ/mol can also be estimated by Bragg-Williams approximation. To interpret the thermal desorption spectra for the β3 state, moreover, those for the model of a first order and a second order desorption are simulated using quasi-chemical approximation. In this study, a model of lying-down CO species is proposed for the β3 state of CO adsorption.

An Influence of Groundwater Flow on Performance of Closed Borehole Heat Exchangers (Part-2) (지하수류가 밀폐형 천공 지중 열교환기 성능에 미치는 영향(2))

  • Hahn, Jeongsang;Kiem, Youngseek;Lee, Juhyun;Lee, Byoungho;Hahn, Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.114-127
    • /
    • 2016
  • An increase of groundwater flux in BHE system creates that ground temperature (locT) becomes lower in summer and higher in winter time. In other words, it improves significantly the performance of BHE system. The size of thermal plume made up by advection driven-flow under the balanced energy load is relatively small in contrast to the unbalanced energy load where groundwater flow causes considerable change in the size of thermal plume as well ground temperature. The ground temperatures of the up gradient and down gradient BHEs under conduction only heat transport are same due to no groundwater flow. But a significant difference of the ground temperature is observed between the down gradient and up gradient BHE as a result of groundwater flow-driven thermal interference took placed in BHE field. As many BHEs are designed under the obscure assumption of negligible groundwater flow, failure to account for advection can cause inefficiencies in system design and operation. Therefore including groundwater flow in the design procedure is considered to be essential for thermal and economic sustain ability of the BHE system.

Interaction of Co/Ti Bilayer with $SiO_2$ Substrate ($SiO_2$와 Co/Ti 이중층 구조의 상호반응)

  • 권영재;이종무;배대록;강호규
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.208-213
    • /
    • 1998
  • Silicidation of the Co/Ti/Si bilayer system in which Ti is used as epitaxy promoter for $CoSi_2$has recently received much attention. The Co/Ti bilayer on the spacer oxide of gate electrode must be thermally stable at high temperatures for a salicide transistor to be fabricated successfully. In the $SiO_2$substrate was rapid-thermal annealed. The Sheet resistances of the Co/Ti bilayer increased substantially after annealing at $600^{\circ}C$, which is due to the agglomeration of the Co layer to reduce the interface energy between the Co layer and the $SiO_2$substrate. In the bilayer system insulating Ti oxide stoichiometric Ti oxide and silicide were not found after annealing.

  • PDF

Thermal Distortion Analysis by Inconel Over-Lay At Circular Moonpool Structures

  • Ha, Yunsok
    • International Journal of Ocean System Engineering
    • /
    • v.3 no.2
    • /
    • pp.95-101
    • /
    • 2013
  • This study is mainly interested in roundness of a circular moonpool structure in FPSO. Because this structure needs abrasion-resistance on inner wall, we should do buttering widely and deeply by using Inconel. But a general buttering can cause a severe distortion at structures. If someone can analyze the roundness by thermal distortion under Inconel over-lay, an erection policy can be established. In this study, shrinkage methodology by designed stress-strain curve was used and the result allowed deciding an appropriate block size.