• Title/Summary/Keyword: $CO_2$ pressure

Search Result 2,650, Processing Time 0.037 seconds

The heat transfer characteristics of supercritical $CO_2$ in a horizontal tube (수평관내 $CO_2$의 초임계 영역내 열전달에 관한 연구)

  • Oh Hoo-Kyu;Lee Dong-Geon;Son Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.526-532
    • /
    • 2005
  • The cooling heat transfer coefficient of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter. a pre-heater and gas cooler(test section). The test section consists of a smooth, horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $400\;kg/m^{2}s$ and the inlet cooling pressure of 7.5 MPa to 10.0 MPa. The variation of heat transfer coefficient tends to decrease as cooling pressure of $CO_2$ increases. The heat transfer coefficient with respect to mass flux increases as mass flux increases. The pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with that predicted by Blasius's correlation. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Bringer-Smith.

$H_2$ Formation from HI by the Ram Pressure

  • Chung, Eun Jung;Kim, Sungeun;Chung, Aeree
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.70.2-70.2
    • /
    • 2012
  • Ram pressure is known as one of the most efficient mechanisms to deplete the atomic gas of galaxies in the cluster environment. However, the influence of the ram pressure on the molecular gas is not yet clear. Since the molecular gas resides in the galactic center, thus in the deeper potential well, and has higher surface density than the atomic hydrogen, it has been known as that the molecular gas is not easily affected and/or stripped away by the ICM-ISM interaction. To investigate the influence of the ram pressure on the gas properties of galaxies, we compare HI and $^{12}CO$(J=1-0) distribution of NGC 4654 which is experiencing on-going ram pressure and shows distinct HI, CO, optical, and $H_2$ features due to the ram pressure. We discuss the possibilities of H2 formation from HI by the ram pressure and also the star formation activities.

  • PDF

High-pressure synchrotron X-ray diffraction study of tremolite and actinolite in various fluids

  • Kong, Mihye;Vogt, Thomas;Lee, Yongjae
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1218-1224
    • /
    • 2018
  • Pressure-dependent structural and morphological changes of two amphibole minerals, tremolite and actinolite, were investigated up to 7.0 GPa using synchrotron X-ray powder diffraction underthree different pressure transmission media (PTM): water (W), $CO_2$ and silicone oil (SI). The elastic response of tremolite and actinolite are found to be dependent on the PTM used. When using water (W) as PTM, tremolite and actinolite show normal volume contractions with bulk moduli of 74(1) and 78(1) GPa, respectively. When using $CO_2$ as PTM, we observe the formation of calcite from tremolite above 3.8(1) GPa, whereas actinolite did not show any carbonation reaction. Under silicone oil PTM, we observe modulated volume contraction behaviors in both samples, compared to water and $CO_2$ PTM, with bulk moduli in the order of 90(1) and 94(4) GPa for tremolite and actinolite, respectively.

Experimental Study on Optimal Design of Internal Heat Exchanger for $CO_2$ System ($CO_2$ 시스템에서 내부열교환기 최적설계에 대한 실험적 연구)

  • Kim, Dae-Hoon;Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2085-2090
    • /
    • 2007
  • This paper describes the possible way to improve the capacity, the efficiency and the pressure drop of $CO_2$ system. It is considered the use of an internal heat exchanger (IHX) to improve the performance of the $CO_2$ system. Experiment was performed by changing a tube shape, a tube number and a tube length of IHX to investigate the performance of IHX for $CO_2$ system. The focus of the present study is to obtain the concept on IHX optimal design. Experimental results show that design parameters are closely related with the capacity and the pressure drop of $CO_2$ system. In the transcritical $CO_2$ cycle, the system performance is very sensitive to the IHX design. System performance on operation condition and shape of IHX is also introduced.

  • PDF

Effect of $CO_2$Gas injection on Properties of Extruded Corn Starch (탄산가스 주입이 압출팽화 옥수수전분의 성질에 미치는 영향)

  • 류기형;강선희;이은용;임승택
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.26 no.3
    • /
    • pp.436-442
    • /
    • 1997
  • Corn starch was extruded under relatively low shear, high moisture, and low temperature. Puffing of corn starch dough was induced by injecting $CO_2$gas in the range from 0MPa to 0.09MPa. Piece density and compressive modulus for puffed corn starch were decreased by increasing the injection pressure to 0.07MPa, and increased above 0.07MPa. the microstructure of corn starch puffed with $CO_2$gas showed thick cell size, compared with those puffed with steam. RVA paste viscosity curves of corn starch puffed with $CO_2$had different patterns from those puffed with steam, probably resulted from partial gelatinization of starch. Water absorption and solubility were not significantly changed by $CO_2$injection pressure, but the average degree of polymerization was reduced by higher $CO_2$injection. The water absorption, water solubility, and the average degree of polymerization for corn starch puffed with $CO_2$were significantly lower than those puffed with steam.

  • PDF

Coal pyrolysis behaviors at supercritical CO2 conditions

  • Hakduck Kim;Jeongmin Choi;Heechang Lim;Juhun Song
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2022
  • In this study, a product gas yield and carbon conversion were measured during the coal pyrolysis. The pyrolysis process occurred under two different atmospheres such as subcritical (45 bar, 10℃) and supercritical CO2 condition (80 bar, 35℃). Under the same pressure (80 bar), the atmosphere temperature increased from 35℃ to 45℃ to further examine temperature effect on the pyrolysis at supercritical CO2 condition. For all three cases, a power input supplied to heating wire placed below coal bed was controlled to make coal bed temperature constant. The phase change of CO2 atmosphere and subsequent pyrolysis behaviors of coal bed were observed using high-resolution camcorder. The pressure and temperature in the reactor were controlled by a CO2 pump and heater. Then, the coal bed was heated by wire heater to proceed the pyrolysis under supercritical CO2 condition.

The Prediction of Minimum Miscible Pressure for CO2 EOR using a Process Simulator

  • Salim, Felicia;Kim, Seojin;Saputra, Dadan D.S.M.;Bae, Wisup;Lee, Jaihyo;Kim, In-Won
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.606-611
    • /
    • 2016
  • Carbon dioxide injection is a widely known method of enhanced oil recovery (EOR). It is critical for the $CO_2$ EOR that the injected $CO_2$ to reach a condition fully miscible with oil. To reach the miscible point, a certain level of pressure is required, which is known as minimum miscibility pressure (MMP). In this study, a MMP prediction method using a process simulator is proposed. To validate the results of the simulation, those are compared to a slim tube experiment and several empirical correlations of previous literatures. Aspen HYSYS is utilized as the process simulator to create a model of $CO_2$/crude oil encounter. The results of the study show that the process simulator model is capable of predicting MMP and comparable to other published methods.

Chlorination Kinetics of Synthetic Rutile with Cl2+CO Gas (Cl2+CO 혼합가스에 의한 합성루타일 염화반응의 속도론적 연구)

  • Hong, Sung-Min;Lee, So-Yeong;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.29 no.3
    • /
    • pp.3-10
    • /
    • 2020
  • The chlorination kinetics of synthetic rutile prepared by selective chlorination of ilmenite with Cl2 and CO gas mixture were studied in a fluidized bed. Th e effects of reaction temperature, reaction time, and the ratio of Cl2 and CO partial pressure ($p_{Cl_2}/p_{CO}$) on the conversion rate of TiCl4 were investigated. The conversion rate of TiC4 was low under the high $p_{Cl_2}/p_{CO}$ conditions. Moreover, it was considered that the partial pressure of CO gas was more effective than that of Cl2 gas when comparing the stoichiometric conversion rate and experimental results of high CO partial pressure. Considering the porous structure of particles, the rate controlling step of the chlorination of synthetic rutile was determined to be chemical reaction and the activation energy was calculated as 53.77 kJ/mol.

Conversion Characteristics of CH4 and CO2 in an Atmospheric Pressure Plasma Reactor (대기압 플라즈마 반응기에서의 CH4와 CO2의 전환처리 특성)

  • Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.653-657
    • /
    • 2011
  • Conversion characteristics of $CH_4$ and $CO_2$ was studied using an atmospheric pressure plasma for the preparation of synthesis gas composed of $H_2$ and CO. The effects of delivered power, total gas flow rate, and gas residence time in the reactor on the conversion of $CH_4$ and $CO_2$ were evaluated in a plasma reactor with the type of dielectric barrier discharge. The increase of reactor temperature did not affect on the increase of conversion if the temperature does not reach to the appropriate level. The conversion of $CH_4$ and $CO_2$ largely increased with increasing the delivered power. As the $CH_4/CO_2$ ratio increased, the $CH_4$ conversion decreased, whereas the $CO_2$ conversion increased. Generally, the $CH_4$ convesion was higher than the $CO_2$ conversion through the variation of the process parameters.

Technology Innovation in Kimchi Packaging for Marketing in Food Supply Chain (상품적 유통을 고려한 김치 포장의 기술혁신 현황)

  • Lee, Dong Sun;Kwon, Ho Ryoung;An, Duck Soon;Chung, Michael;Lee, Kwang Sik;Yang, Dong Jin
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.18 no.1_2
    • /
    • pp.1-8
    • /
    • 2012
  • Kimchi, a Korean fermented vegetable is packaged without pasteurization and distributed with live bacteria actively working to produce lactic acid and carbon dioxide gas in the product. The $CO_2$ production consisting of two distinct phases of initial fast and later slow rates depends on kimchi type, salt content and storage temperature. The $CO_2$ produced from kimchi is accumulated in the product package causing volume expansion and pressure buildup. The dependence of $CO_2$ production rate on salt content and storage temperature has been published formerly and can be used for estimating the package volume and pressure under a variety of storage conditions. As methods to alleviate the problems from the produced $CO_2$, package designs with controlled diffusion pinhole, high $CO_2$ permeable film or $CO_2$ absorber have been tried by several researchers. Properly designed packages adopting the device or tool were shown to have high dissolved $CO_2$ in kimchi without volume expansion and pressure buildup, giving good sensory quality with carbonic taste. Advantages and limitations of each method have been discussed.

  • PDF