• Title/Summary/Keyword: $CO_2$ 감축

Search Result 343, Processing Time 0.022 seconds

Estimation of CO2 reduction in poorer plants to meet the KYOTO protocol on climate change (기후변화헙약 시행에 따른 발전 분야의 $CO_2$ 감축량 예측)

  • 장길홍;정석용;김해경;황재동;우광제
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.206-207
    • /
    • 2000
  • 지구환경문제 중 지구온난화는 에너지 사용과 상관 관계가 있기 때문에 국가간에 이해 관계가 완전히 해결되지 못한 상태이나, 1997년 쿄토 의정서가 체결됨으로써 우리나라에도 구체적 시행시기 및 감축의무에 대한 압력이 가중되고 있다. 지구 온난화에 가장 큰 영향을 미치는 $CO_2$에 대한 규제는 이미 유럽에서 자동차 규제, 탄소세 도입, 화력발전소 건설 규제 등의 형태로 나타나고 있다. 우리나라 전체 이산화탄소 배출량 중 에너지분야에서 배출되는 이산화탄소는 약 25% 정도인 것으로 알려져 있다. (중략)

  • PDF

Analysis of development trends for the $CO_2$ separation and recovery technologies ($CO_2$ 분리회수 기술 동향 분석)

  • 우광제;황재동;정석용;문길호
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2001.11a
    • /
    • pp.153-154
    • /
    • 2001
  • 온실가스 감축 규제에 대응하기 위해 우리나라를 비롯한 많은 국가에서 대량의 $CO_2$ 감축을 목적으로 다양한 기술개발이 추진되고 있다. 온실가스 저감기술을 분류하는 방법으로 에너지 생산/사용에 대한 효율 향상 기술과 발생되는 온실가스를 근본적으로 억제 혹은 발생 온실가스를 효율적으로 처리하는 기술로 크게 분류되고 있다. 우선, 에너지에 대한 기술 중에는 에너지절약기술과 저탄소 에너지 사용(원자력, 신재생에너지, 천연가스)을 위한 대체에너지 및 청정에너지기술이 있으며, 발생된 온실가스 처리에 대한 분리회수 기술로는 흡착법, 흡수법, 막분리법, 막흡수법 등이 연구되고 있다. (중략)

  • PDF

Strategic Planning of Carbon Capture & Storage (CCS) Infrastructure Considering the Uncertainty in the Operating Cost and Carbon Tax (불확실한 운영비용과 탄소세를 고려한 CCS 기반시설의 전략적 계획)

  • Han, Jee-Hoon;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.471-478
    • /
    • 2012
  • A carbon capture and storage (CCS) plays a very important role to reduce $CO_2$ dramatically in $CO_2$ emission sources which are distributed throughout various areas. Numerous research works have been undertaken to analyze the techno-economic feasibility of planning the CCS infrastructure. However, uncertainties such as $CO_2$ emissions, $CO_2$ reduction costs, and carbon taxes may exist in various impact factors of the CCS infrastructure. However, few research works have adopted these uncertainties in designing the CCS infrastructure. In this study, a two-stage stochastic programming model is developed for planning the CCS infrastructure under uncertain operating costs and carbon taxes. It can help determine where and how much $CO_2$ to capture, store or transport for the purpose of minimizing the total annual $CO_2$ reduction cost in handling the uncertainties while meeting the $CO_2$ mitigation target. The capability of the proposed model to provide correct decisions despite changing the operating costs and carbon taxes is tested by applying it to a real case study based on Korea. The results will help to determine planning of a CCS infrastructure under uncertain environments.

Recent International Development on the Technical and Operational Measures of IMO's CO2 Emission Control From Ships (IMO의 선박기인 CO2 배출 규제 동향 및 고찰)

  • Jung, Rho-Taek
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.14 no.1
    • /
    • pp.65-71
    • /
    • 2011
  • Since 2003, policies and practices related to the reduction of CO2 gas emission from ships has been discussing by the International Maritime Organization. The representative emission index and indicator are the EEDI (Energy Efficiency Design Index) for the new ships and EEOI (Energy Efficiency Operational Indicator) during the voyage. For the CO2 emission monitoring system, the SEEMP (Ship Energy Efficiency Management Plan) is also on the table. This global preparations to reduce theCO2 emission is not except for the surface transportation. This research report elucidates the recent stream on the IMO CO2 emission from ship and detail explanation on the EEDI and EEOI.

Analysis of Patent Trends on the CCUS Technologies (특허 정보 분석을 통한 CCUS 연구개발 동향 분석)

  • Kim, Jung-min;Kim, Seong-Yong;Bae, Junhee;Shinn, Young-Jae;Ahn, Eunyoung;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.491-504
    • /
    • 2020
  • Given the continued climate change and global warming, various technologies for greenhouse gas reduction were discussed worldwide as all 195 countries participated in the Paris Agreement on the reduction of greenhouse gases. The agreement was adopted at the 21st Conference of Parties to the UNFCCC (COP21), which was held in Paris, France, in December 2015, and it revealed that reducing CO2 is the most efficient method of greenhouse gas reduction. Accordingly, carbon capture/utilization/storage (CCUS) technology has been noted as a means of making practical contributions to CO2 reduction, and research and development (R&D) activities in many countries are active in the field of CCUS technology. Therefore, this study aims to provide a basis for CCUS R&D and strategic support measures by analyzing patent trends in technologies related to CCUS. The patent analysis collected a total of 10,137 patents in the United States, Korea, Japan, Europe, and China; the number of patents in the United States was the highest according to patent analysis by country. According to an analysis by technology, capture-related technology was high at 60%, but given the recent increase in technology related to utilization, technology demonstration, R&D, and policy support should be continued.

A Study on the Reduction of $CO_2$ Emissions and Operating Costs of the Ship in Port by Shore Electric Power (육상전력 사용에 따른 정박중인 선박의 $CO_2$ 배출 및 운항비용 절감에 관한 연구)

  • Han, Won-Hui;Lim, Kyung-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.2
    • /
    • pp.229-234
    • /
    • 2010
  • Recently, nations around the world are putting various efforts in many aspects to decrease greenhouse gases and international cooperation is urgently required. As part of these efforts, the shipping industry is working towords establishing "green parts" that reduce the carbon content of the greenhouse gases emitted in ports and can also decrease the operating costs. This study has tried to look for how to supply shore power instead of suppling ship's own generated power as a basic researches for reduction of carbon emissions and construction of "green parts" system. And in this paper, the training ship 'SAENURI' of Mokpo Maritime University under actual operation was selected to investigate for environmental and expense effects. The results of this study showed that $CO_2$ emissions Mere reduced 34% and operating costs Mere reduced approximately 31% in case of using the shore paper.

A Study on the Carbon Neutrality Scenario Model for Technology Application in Units of Space (공간 단위 탄소중립 기술적용 시나리오 모형(CATAS) 연구)

  • Park, Shinyoung;Choi, Yuyoung;Lee, Mina
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.63-69
    • /
    • 2023
  • 'Carbon-neutrality Assessment based on Technology Application Scenario (CATAS)' provides an analysis of greenhouse gas (GHG) reduction effectiveness when applying carbon-neutrality technology to areas such as energy conversion, transportation, and buildings at certain spatial levels. As for the development scope of the model, GHG emission sources were analyzed for direct GHG emissions, and the boundary between direct and indirect emissions are set according to the spatial scope. The technical scope included nine technologies and forest sinks in the transition sector that occupies the largest portion of GHG emissions in the 2050 carbon neutral scenario. The carbon neutrality rate evaluation methodology consists of four steps: ① analysis of GHG emissions, ② prediction of energy production according to technology introduction, ③ calculation of GHG reduction, and ④ calculation of carbon neutrality rate. After the web-based CATAS-BASIC was developed, an analysis was conducted by applying the new and renewable energy distribution goals presented in the 「2050 Greenhouse Gas Reduction Promotion Plan」 of the Seoul Metropolitan Government. As a result of applying solar power, hydrogen fuel cell, and hydrothermal, the introduction of technology reduced 0.43 million tCO2eq of 1.49 million tCO2eq, which is the amount of emissions from the conversion sector in Seoul, and the carbon neutrality rate in the conversion sector was analyzed to be 28.94 %.