• Title/Summary/Keyword: $CO_2$ 가스

Search Result 3,283, Processing Time 0.027 seconds

Hydrogen Production with Space velocity and Steam/CO ratio by Water Gas Shift Reaction of Syngas from waste (폐기물 합성가스의 수성가스 전환 반응을 이용한 공간속도 및 스팀공급비에 따른 수소생산 특성)

  • Kim, Su-Hyun;Gu, Jae-Hoi;Seo, Min-Hye;Yoon, Ki-Su;Kim, Sung-Hyun;Choi, Jong-Hye
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.829-831
    • /
    • 2009
  • 폐기물, 석탄 등 다양한 시료의 가스화 반응을 통해서 발생되는 합성가스는 CO, $H_2$, $CO_2$가 주성분으로 가스엔진, 가스터빈 등의 연료로 사용하여 발전하거나 합성반응을 통해 다양한 화학원료로의 전환이 가능하다. 또한 폐기물, 석탄 등의 다양한 원료의 가스화 반응에 의해 발생한 합성가스로부터 F-T(Fischer-Tropsch) 합성을 통한 인조합성석유, Non F-T 합성을 통한 메탄올, DME(Dimethyl Ether) 등을 제조할 수 있으며, 메탄화 반응을 통해 대체천연가스(SNG, Substitute Natural Gas)로 제조하여 활용하는 방안도 가능하다. 또한 현재 상업용 규모의 수소 제조 방법 중에서 가장 경제적인 방법으로 천연가스를 개질하여 CO, $H_2$가 주성분인 합성가스를 만든 다음 수성가스 전환, PSA(Pressure Swing Adsorption)통해 $CO_2$$H_2$를 분리하여 생산하고 있으나, 천연가스 가격의 상승 및 다양한 시료로부터 향후 경제성 확보가 가능한 수소 제조 방법에 대한 연구가 진행되고 있으며, 석탄 가스화 및 폐기물 가스화를 통해 얻어진 합성가스로부터의 수소 제조 공정이 개발 및 상업화 추진되고 있다. 본 연구에서는 폐기물 가스화를 통해 발생한 합성가스에 대하여 수성가스 전환 반응을 통한 수소 생산 특성 및 수성가스 전환 반응의 공간속도 변화 및 스팀주입량 변화에 따른 반응 특성을 고찰하였다.

  • PDF

Characterization of CO2 Gasification of 17 Coals With Regard to Coal Rank (다양한 등급의 17종 석탄의 CO2 가스화 반응특성 연구)

  • Kim, Soohyun;Yoo, Jiho;Chun, Donghyuk;Lee, Sihyun;Rhee, Young Woo
    • Clean Technology
    • /
    • v.19 no.3
    • /
    • pp.333-341
    • /
    • 2013
  • This paper presents results on $CO_2$ gasification of 17 raw coals containing a wide range of volatile matter (21-57 wt%). The gasification is performed using a TGA under $CO_2$ and also under $N_2$ atmosphere. An amount of weight loss with increasing temperature is proportional to that of volatile matter in a coal under $N_2$ atmosphere. Reactivity of $CO_2$ gasification also increases with a content of volatile matter. However, the correlation is a little scattered. Oxygenated functional groups in a coal are generally reactive and therefore, an increase in O/C ratio leads to enhanced reactivity. However, $CO_2$ reactivity is affected by neither H/C ratio nor a content of ashes that possibly activate the gasification reaction. These findings are also applicable to steam coal gasification and the reactivity series are confirmed in the test at a fixed bed reactor.

Study on the Separation of CO2 from Flue Gas Using Polysulfone Hollow Fiber Membrane (폴리설폰 중공사막을 이용한 연소 배기가스 중 이산화탄소 분리에 관한 연구)

  • Kim, Seongcheon;Chun, Jeonghyeon;Chun, Youngnam
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.147-152
    • /
    • 2014
  • In this research, polysulfone hollow fiber membrane was used to recover $CO_2$ which is one of greenhouse gases from flue gas stream being emitted after the combustion of fossil fuels. The prerequisite requirement is to design the membrane process producing high-purity $CO_2$ from flue gas. For separation of $CO_2$, a membrane module and flue gas containing 10% carbon dioxide was used. The effects of operating conditions such as pressure, temperature, feed gas composition and multi-stage membrane on separation performance were examined at various stage cuts. Higher operating pressure and temperature increased carbon dioxide concentration and recovery ratio in permeate. Recovery ratio and separation efficiency increased if a higher content of $CO_2$ injection gas composition. Three-stage membrane system was producing a 95% $CO_2$ with 90% recovery from flue gas. The separation efficiency of three-stage membrane system was higher than one-stage system.

Recent Research Trends on Separation of CO2 Emitted From Steelmaking Process using Gas Hydrate Technology (가스 하이드레이트 형성 원리를 이용한 철강공정 배기가스 중 CO2 분리기술에 대한 최근 연구 동향)

  • Lee, Bo Ram;Ryu, Jun-Hyung;Han, Kunwoo;Park, Da-Hye;Lee, Kun-Hong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.232-243
    • /
    • 2010
  • Gas hydrates are crystalline solids composed of water and gas molecules. Water molecules are linked through hydrogen bonding and create cavities(host lattice) that can capture a large variety of guest molecules under appropriate conditions, generally high pressure and low temperature. Recently, many researchers try to apply gas hydrates to industrial processes to capture greenhouse gases due to the facts that the process is eco-friendly and target gas molecules can be preferentially captured. In this paper, we introduced recent studies on $CO_2$ and $CO_2-N_2$ mixture hydrates to evaluate the feasibility of industrial application of gas hydrate technology to $CO_2$ capture process. Specifically, we put emphasis on the technical feasibility of $CO_2$ separation in steel industry using gas hydrate formation principles.

Trends and Characteristics in SF6 Emission Reduction Technology of Electrical Equipment (전력설비에서의 SF6 저감기술 동향 및 특성 분석)

  • Kim, Yeah-Won;Kim, Jeong-Man;Park, Sang-Hyuk;Lee, Moon-Gu
    • Journal of Climate Change Research
    • /
    • v.4 no.3
    • /
    • pp.269-278
    • /
    • 2013
  • Sulfur hexafloride($SF_6$) emission to atmosphere is lower than $CO_2$, but $SF_6$ GWP is 22,800 times lager than $CO_2$. In recent years as restriction of $non-CO_2$ gas has been greatly reinforced, development of environment-friendly technology with $SF_6$ removal is becoming to main issue. This study shows that $SF_6$ used insulator electrical equipment has emission characteristics during the each phase(maintenance, use, diposal), and analyzed $SF_6$ emission reduction technology related phase. The major technology applies maintenance and disposal step is that improvment of gas recovery rate($85{\rightarrow}99%$), manufacturing catalysts, internal inspection of circuit breaker using endoscopy. Using those technolgies can reduce $SF_6$ emission in atmosphere.

The quantitative analysis of combustive gases on fire by remote passive open path FT-IR spectrometer (Passive open-path FT-IR spectrometer를 사용한 원거리 화재 연소 가스 정량 분석)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.120-124
    • /
    • 2013
  • It was studied to analyze the $CO_2$, CO, $SO_2$ standard gases of combustion gases by the open path FT-IR spectrometer with passive mode for remote analysis of air pollutant and volcano gases without IR lamp. As result, it was confirmed to have good linearity with more than 0.9 as correlation coefficients on the calibration curve of $CO_2$, CO concentration by MLR method. But in the case of $SO_2$, because the correlation coefficients were 0.88, the linearity could be lower. Finally, the concentration of three gases was predicted on in-site fire experiment under the condition of quantitative analysis. It could measure high $CO_2$ concentration as predicted result, but didn't measure the CO and $SO_2$. According to the result, it was possible to measure the combustion gases to long distance by only open path FT-IR spectrometer without infrared lamp.

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

Development of Low-Power CO Gas Sensor (저전력 CO 가스센서 개발)

  • Cha, Sung-Ik;Shin, Paik-Kyun;Lee, Boong-Joo;Kim, Jong-Won;Gang, Moon-Sik;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1410-1412
    • /
    • 2003
  • PTC 자기발열기판을 사용해서 저전력 방폭형 CO센서를 제작하고 그 특성을 고찰하였다. CO가스센서의 감지특성을 향상시키기 위하여 Pt가 island 형상을 갖는 다층 Pt/$SnO_2$ 박막구조를 도입하였으며, 이와 같은 구조는 Pt/$SnO_2$ 위에 다시 $SnO_2$ 및 Pt cluster 층들을 연속적으로 증착함으로서 제작되었다. 200ppm의 CO가스농도에서 측정된 다층 $Pt/SnO_2$박막 센서의 감도는 1.72($R_{air}/R_{CO}$)로, 단충 Pt/$SnO_2$ 박막 센서의 최대감도(1.23)보다 훨씬 더 높았다 이것은 Pt와 $SnO_2$사이의 계면적 증대에 기인하는 것으로 생각된다. 제작된 Pt/$SnO_2$ 가스센서의 평균 소비전력은 38.5mW이며, 측정농도범위($30{\sim}1,000ppm$)에서 매우 양호한 감지특성을 나타내었다.

  • PDF

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).