• Title/Summary/Keyword: $CO_2$ 가스화

Search Result 828, Processing Time 0.028 seconds

Combustion Characteristics and Exhaust Emissions in Spark-ignition Engine Using Gasoline-ammonia (가솔린 엔진에서 가솔린-암모니아 혼합 연료의 연소 및 배기 특성)

  • Ryu, Kyunghyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.155-165
    • /
    • 2013
  • The effect of gaseous ammonia direct injection on the engine performance and exhaust emissions in gasoline-ammonia dual fueled spark-ignition engine was investigated in this study. Results show that based on the gasoline contribution engine power increases as the ammonia injection timing and duration is advanced and increased, respectively. However, as the initial amount of gasoline is increased the maximum power output contribution from ammonia is reduced. For gasoline-ammonia, the appropriate injection timing is found to range from 320 BTDC at low loads to 370 BTDC at high loads and the peak pressures are slightly lower than that for gasoline due to the slow flame speed of ammonia, resulting in the reduction of combustion efficiency. The brake specific energy consumption (BSEC) for gasoline-ammonia has little difference compared to the BSEC for gasoline only. Ammonia direct injection causes slight reduction of $CO_2$ and CO for all presented loads but significantly increases HC due to the low combustion efficiency of ammonia. Also, ammonia direct injection results in both increased ammonia and NOx in the exhaust due to formation of fuel NOx and ammonia slip.

Gas Cluster ion Source for Etching and Smoothing of Solid Surfaces (고체 표면 식각 및 평탄화를 위한 가스 클러스터 이온원 개발)

  • 송재훈;최덕균;최원국
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.232-235
    • /
    • 2002
  • An 150 kV gas cluster ion accelerator was fabricated and assessed. The change of surface morphology and surface roughness were examined by an atom force microscope (AFM) after irradiation of $CO_2$ gas clusters on Si (100) surfaces at the acceleration voltages of 50 kV. The density of hillocks induced by cluster ion impact was gradually increased with the dosage up to 5$\times$10$^{11}$ ions/$\textrm{cm}^2$. At the boundary of the ion dosage of 10$^{12}$ ions/$\textrm{cm}^2$, the density of the induced hillocks was decreased and RMS (root mean square) surface roughness was not deteriorated further. At the dosage of 5x10$^{13}$ ions/$\textrm{cm}^2$, the induced hillocks completely disappeared and the surface became very flat. In addition, the irradiated region was sputtered. $CO_2$ cluster ions are irradiated at the acceleration voltage of 25 kV to remove hillocks on indium tin oxide (ITO) surface and thus to attain highly smooth surfaces. $CO_2$ monomer ions are also bombarded on the ITO surface at the same acceleration voltage to compare sputtering phenomena. From the AFM results, the irradiation of monomer ions make the hillocks sharper and the surfaces rougher On the other hand, the irradiation of $CO_2$ cluster ions reduces the hight of hillocks and planarize the ITO surfaces. From the experiment of isolated cluster ion impact on the Si surfaces, the induced hillocks m high had the surfaces embossed at the lower ion dosages. The surface roughness was slightly increased with the hillock density and the ion dosage. At higher than a critical ion dosage, the induced hillocks were sputtered and the sputtered particles migrated in order to fill valleys among the hillocks. After prolonged irradiation of cluster ions, the irradiated region was very flat and etched.

  • PDF

Impact of Sulfur Dioxide Impurity on Process Design of $CO_2$ Offshore Geological Storage: Evaluation of Physical Property Models and Optimization of Binary Parameter (이산화황 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태량 모델의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil;Cho, Mang-Ik
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.13 no.3
    • /
    • pp.187-197
    • /
    • 2010
  • Carbon dioxide Capture and Storage(CCS) is regarded as one of the most promising options to response climate change. CCS is a three-stage process consisting of the capture of carbon dioxide($CO_2$), the transport of $CO_2$ to a storage location, and the long term isolation of $CO_2$ from the atmosphere for the purpose of carbon emission mitigation. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the $CO_2$ mixture captured from the power plants and steel making plants contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_2$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification, transport and injection processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to analyze the impact of these impurities on the whole CCS process at initial design stage. The purpose of the present paper is to compare and analyse the relevant physical property models including BWRS, PR, PRBM, RKS and SRK equations of state, and NRTL-RK model which are crucial numerical process simulation tools. To evaluate the predictive accuracy of the equation of the state for $CO_2-SO_2$ mixture, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $SO_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable physical property model with optimized binary parameter in designing the $CO_2-SO_2$ mixture marine geological storage process.

The Characteristics of Spray and Exhaust Emissions Environmental Assessment of Adulteration and Convention Diesel (유사경유 및 정상경유 미립화특성과 배출가스 환경성평가)

  • Lee, Jong-Tae;Moon, Sun-Hee;Kim, Jeong-Soo;Kim, Sun-Moon;Park, Gyu-Tae;Lim, Yun-Sung
    • Journal of ILASS-Korea
    • /
    • v.18 no.2
    • /
    • pp.106-111
    • /
    • 2013
  • Adulterations fuel have been using in the vehicle in these days. Because gasoline, diesel prices are rising every day. so people find more cheap price fuel. Adulterations fuel caused a serious air pollution problems. Adulteration fuel were made from waste engine oil, waste paint. According to Government regulations permit to be used recycle fuel(adulteration fuel) only in industrial boiler. Unburned fuel pollutants are effected to human health. In this paper, the hazardous air pollutants characteristics in the diesel vehicles according to adulterations of vehicle fuels were carried out in the NEDC test mode in chassis dynamometer. It is revealed that the all of the regulation pollutants (THC, NOx, CO and PM) emission in the adulterations of vehicle fuels was increased also the green house gas, $CO_2$ was increased. In the hazardous air pollutants characteristics, the VOCs(Volitile Organic Compounds) BTEX(Benzene, Toluene, Ethylbenzene, Xylene) emissions in the adulterations of vehicle fuels showed higher level than these in the diesel fuels.

Combustion Characteristics of Waste Sewage Sludge using Oxy-fuel Circulating Fluidized Bed (슬러지 순산소 유동층 연소특성)

  • Jang, Ha-Na;Sung, Jin-Ho;Choi, Hang Seok;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.846-853
    • /
    • 2017
  • Cold bed and $30kW_{th}$ pilot bed tests using circulating fluidized bed (CFB) were conducted to apply oxy-fuel technology for waste sludge combustion as a carbon capture and storage technology. In cold bed test, the minimum fluidization velocity ($u_{mf}$) and superficial velocity for fast fluidization was determined as 0.120 m/s and 2.5 m/s, respectively. In the pilot test, air and oxy-fuel combustion experiments for waste sludge were conducted using CFB unit. The flue-gas temperature in 21~25% oxy-fuel combustion was higher than that of air and up to 30% oxy-fuel combustion. In addition, the concentration of carbon dioxide was more than 80% with the oxygen injection range from 21% to 25% in oxy-fuel CFB waste sludge combustion.

O2 Production from CO2 by using Chemical Lung Containing Potassium Superoxide (초산화칼륨이 포함된 화학 폐를 이용한 이산화탄소의 산소로의 전환 반응)

  • Kim, Jinho;Jurng, Tae-Hoon;Park, YoonKook;Jeong, Soon Kwan
    • Korean Chemical Engineering Research
    • /
    • v.47 no.4
    • /
    • pp.436-440
    • /
    • 2009
  • This study demonstrates the use of a chemical lung containing potassium superoxide to convert carbon dioxide in air to oxygen. In order to reduce its extremely high reactivity, potassium superoxide was first mixed with calcium hydroxide and then combined at various ratios with polysiloxane. Silicone polymer used here served as both a water repellent and the polymer matrix. In general, the amount of carbon dioxide captured as well as that of oxygen produced increased as the proportion of potassium superoxide in the chemical lung increased. FT-IR spectroscopy revealed that the Si-O bond in chemical lung appeared at $1,050cm^{-1}$ and absorbance of chemical lung containing higher amounts of silicone was higher than that of chemical lung containing lower amounts. These results indicate that such a chemical lung may also be a useful sorbent for other acid gases, such as sulfur oxides and nitrogen oxides.

A suggestion on the incentive and penalty based on carbon tax scheme through EEOI results (EEOI 결과에 따른 탄소세 기반 격려금과 벌과금 부과 방안 제시)

  • Park, Go-Ryong;Cho, Kwon-Hae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.4
    • /
    • pp.323-329
    • /
    • 2017
  • Nowadays, considering global warming and enhanced prohibition to discharge pollutants at sea, all of existing operation-ships must lead to the reduction of fuel consumption. International standards of International Maritime Organization and EU rules governing harbor pollutants are being strengthened. Therefore, ship-owners and operators are seeking ways to reduce $CO_2$, SOx, and NOx emissions. Although world trade continues to expand, total fuel usage for sea transport tends to diminish. However, ICS(International Chamber of Shipping) has set a goal of reducing $CO_2$ emissions from shipping by 50% until 2050. In addition, with respect to the Paris Climate Change Accord in 2015, IMO proposes to set up a reduction target of GHG emission from existing operation-ships. For setting up a reduction target of GHG from international maritime transport, "A data collection system for fuel consumption" will be introduced in the near future. In order to effectively reduce the use of fuel in a ship in accordance with the trend of compulsory fuel saving from operation ships, this paper suggested adoption of an Incentive-Penalty scheme based on Emission-Trading-Scheme, Carbon Tax, and basic calculation formula after verifying the EEOI level for a year.

Improved Cycle Life and Storage Performance in High-Voltage Operated Li2MnO3-LiMO2(M=Ni, Co, Mn)/Graphite Cell System by Fluorine Compounds as Main Electrolyte Solvent (고전압 구동 Li2MnO3-LiMO2(M=Ni, Co, Mn)/graphite 시스템에서의 전지 수명 및 고온 방치 특성 향상에 효과적인 플루오로 화합물계 전해액에 대한 연구)

  • Yu, Jung-Yi;Shin, Woocheol;Lee, Byong-Gon
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.162-168
    • /
    • 2013
  • $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) nano-composite is a promising cathode material for xEV application due to its high theoretic capacity. However high voltage operating system of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn) has worked as a hurdle in its application because of the inherent demerits, such as cycle life degradation and gas evolution. In order to enhance cell performance of $Li_2MnO_3-LiMO_2$(M=Ni, Co, Mn)/graphite cell, we examined electrolyte mainly composed of FEC, fluroalkyl ether and $LiPF_6$ (F-based EL). F-based EL showed much better discharging retention ratio than 1.3 M $LiPF_6$ EC/EMC/DMC (3/4/3, v/v/v) (STD). Furthermore gas evolution, especially CO and $CO_2$ during $60^{\circ}C$ storage for 30 days was dramatically reduced owing to thermal stable SEI formation effect of F-based EL.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

CO2 emission Reduction and Load factor improvement of Power Systems, using Geothermal Source Heat Pump (지열히트펌프 활용을 통한 전력계통 부하율 향상 및 CO2 감축)

  • Lee, Geon-Woo;Lee, Sang-Joong;Yang, Seong-Deog
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.10a
    • /
    • pp.349-354
    • /
    • 2008
  • August 2008, Our country was announced the Energy Vision 2030 for strengthening response capability climate change by the greenhouse effect, 'Stable supply of energy' and 'Efficient systems'. According to the report, Our country is the world's top 10 is a country that consumes a lot of energy. and more than 97% of the energy because it is dependent on foreign imports, The importance of NRE(New and Renewable Energy) is rising significantly, This paper was applied geothermal heat pump it one kind of the renewable energy equipment, in General buildings, and analyzed the effect of the installation. Thus, to improve the load factor of the Electric power system was proposed, and As a result, can be expected the energy cost savings and the reduction of greenhouse gases, through Economic electric power supply.

  • PDF