• 제목/요약/키워드: $CO_2$ 가스화

검색결과 828건 처리시간 0.026초

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • 제22권1호
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Air Purification of Smoking Booth Using Photocatalytic Process and Air Filter (광촉매공정과 필터를 이용한 흡연부스 공기정화연구)

  • Kim, Tae-Young;Cho, Yeong-Tae;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • 제27권4호
    • /
    • pp.433-438
    • /
    • 2016
  • The current study evaluated the air quality of the smoking booth equipped with the air purification system consisting of photocatalysts and air filters by measuring the concentrations of hazardous substances of tobacco smoke such as CO, HCHO, $CH_3CHO$, PM10 and PM2.5. To enhance the removal efficiency of hazardous substances, an infrared ray was exposed to improve the reactivity of OH radical generated from the photocatalyst toward environmental tobacco smoke (ETS) gas phase hazardous materials. It was found that the smoking booth with the air purification system improved the removal efficiency of hazardous substances containing formaldehyde by 85.2% compared to that of the smoking booth without any purification systems. In addition, the removal efficiency of the fine dust after treatment was enhanced up to 89.4%.

Characterization of Glycine Metal Salts for $CO_2$ Absorption (이산화탄소 흡수를 위한 글리신 금속염의 특성 연구)

  • Lim, Yun-Hui;Park, Young Koo;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • 제23권3호
    • /
    • pp.284-288
    • /
    • 2012
  • This work deals with the chemical characterization of glycine aqueous solution in $CO_2$ absorption. Three alkali elements were impregnated into the glycine in order to facilitate the formation of amino functionalities. The analysis by IR revealed the transformation of ammonium ions to the amino group. In addition, the NMR analysis showed that the substitution of metal cations to the chemical shift of hydrogen and carbon atoms in glycine; in order of lithium glycinate, sodium glycinate and potassium glycinate depending on the electro negativity. Meanwhile, the $CO_2$ absorption at room temperature was the highest in primary amine solution, but at the increasing temperature sodium glycinate could capture more $CO_2$ than that of the pure amine solution.

Technique Status of Carbon Fibers-reinforced Composites for Aircrafts (항공기용 탄소섬유강화 복합재료의 기술동향)

  • Kim, Ki-Seok;Park, Soo-Jin
    • Elastomers and Composites
    • /
    • 제46권2호
    • /
    • pp.118-124
    • /
    • 2011
  • Recently, the need of new materials which have excellent physical properties and functional characteristics has been increased in all industries. In particular, body weight reduction via new materials in aerospace industry was significantly emphasized by the requirement of environmental protection through the fuel savings and reduction of greenhouse gas, i.e., carbon dioxide($CO_2$). Also, for various applications, the development of high performance custom materials with excellent physical properties was the current primary goal of materials science and technology. In this respect, carbon fiber-reinforced composites were the most candidates among the various materials. Indeed, carbon fiber-reinforced composites have been lately used as essential materials for the weight reduction of aircraft and the demand has increased remarkably. Therefore, in this paper, we focused on the need of carbon fiber composites in the fields of aircraft and technique status.

Effect of Ni on Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ catalysts for water gas shift reaction (WGS 반응용 Pt/$Ce_{(1-x)}Zr_{(x)}O_2$ 촉매에 Ni 첨가에 따른 영향)

  • Jeong, Dae-Woon;Kim, Ki-Sun;Eum, Ic-Hwan;Lee, Sung-Hun;Koo, Kee-Young;Yoon, Wang-Lai;Roh, Hyun-Seog
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 추계학술대회 논문집
    • /
    • pp.232-232
    • /
    • 2009
  • 최근 WGS반응용 Pt 촉매의 성능 향상을 위한 다양한 담체 및 조촉매(Promotor) 개발에 대한 연구가 활발하게 진행되고 있다. 선행 연구결과, 입방(Cubic)구조를 가지는 $Ce_{0.8}Zr_{0.2}O_2$ 담체는 정방 입계(Tetragonal)구조를 가지는 $Ce_{0.2}Zr_{0.8}O_2$ 담체 또는 혼합산화물(Mixed oxide)구조를 가지는 $Ce_{0.5}Zr_{0.5}O_2$ 담체 보다 높은 활성과 안전성을 가진다. 이것은 촉매의 성능 향상이 Ce-$ZrO_2$의 결정구조에 의존한다는 것을 나타낸다. 따라서 WGS 반응에서 Ce/Zr 비에 따라 변화된 담체 특성이 Pt 촉매의 활성에 영향이 있을 것으로 예상되며 실험결과 1% Pt/$CeO_2$ 촉매가 가장 높은 활성을 나타내었다. 따라서 Pt/Ce-$ZrO_2$ 촉매의 성능 향상을 위해 Ce-$ZrO_2$ 담체에 조촉매인 Ni을 첨가하여 촉매적 활성을 비교하여 보았다. 촉매는 2%의 Pt과 15%의 Ni로 고정하였고 Ce/Zr 비를 제조변수로 하였다. 제조된 모든 담체는 공침법(Co-precipitation)을 사용하여 제조하였으며 $500^{\circ}C$에서 6시간 소성하였다. Pt 촉매는 함침법 (Incipient wetness impregnation)으로 담지 시켰다. 2% Pt/Ce-$ZrO_2$ 촉매와 2% Pt/15% Ni-Ce-$ZrO_2$ 촉매는 저온영역($200^{\circ}{\sim}320^{\circ}C$)에서 비슷한 CO 전환율을 나타내었으나 고온영역($360^{\circ}C{\sim}400^{\circ}C$)에서는 2% Pt/15% Ni-Ce-$ZrO_2$ 촉매가 더 높은 CO의 전환율을 나타내었다. 이것은 Ni의 영향으로 고온에서 부반응인 메탄화 반응(Methanation reaction)이 생긴 것으로 판단되어 메탄($CH_4$)의 선택도를 살펴본 결과 2% Pt/15% Ni-Ce-$ZrO_2$ 촉매가 고온영역($360^{\circ}{\sim}400^{\circ}C$)에서 급격하게 증가하는 것으로 나타나 메탄화 반응이 일어난 사실을 증명한다.

  • PDF

New Smoke Risk Assessment on Wood Treated with Silicone Compound (실리콘 화합물로 처리된 목재의 새로운 연기위험성 평가)

  • Chung, Yeong-Jin;Jin, Eui
    • Fire Science and Engineering
    • /
    • 제33권4호
    • /
    • pp.16-27
    • /
    • 2019
  • A burning test was conducted on the smoke and combustion gases generated from cypress wood treated with sodium silicate, 3-aminopropyltrimethoxysilane sol, 3-(2-aminoethylamino)propylmethyldimethoxysilane sol, and 3-(2-aminoethylamino) propyltrimethoxysilane sol. The silicone compound sol was applied to each of the cypress wood specimens three times with a brush. The smoke and combustion generation gas were analyzed using a cone calorimeter (ISO 5660-1) and the smoke was also evaluated by applying new smoke risk assessment method. The smoke performance index (SPI) of the cypress treated with silicone compound increased 1.66 to 8.42 times and the smoke growth index (SGI) was 11.8 to 88.2%, respectively. The smoke intensity (SI) is expected to be 1.0~50.5% lower than that of the base specimens, resulting in lower smoke and fire hazards. The third maximum carbon monoxide (COpeak) concentration of the specimens treated with silicone compounds was 22.5~33.3% lower than that of the base specimens. On the other hand, it produced potentially fatal toxicity that was 1.48~1.72 times higher than the US Occupational Safety and Health Administration (OSHA) acceptance standard (PEL). Cypress wood itself produced a high carbon monoxide concentration, but the silicon compound played a role in reducing this level.

Estimation of Ammonia Stripping Condition for Adequate Aerobic Liquid-Composting of Swine Manure (돈분뇨의 적합한 호기성 액비화를 위한 암모니아 탈기조건 설정)

  • Son, Bo-Kyoon;Gang, Seong-Gu;Jo, Eun-Ju;Kim, Shin-Do;Lee, Chang-Ju;Kim, Jeong-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • 제39권2호
    • /
    • pp.73-79
    • /
    • 2006
  • Aeration is the most important and indispensable operation unit for the treatment of swine manure using aerobic liquid-composting process. The composting of swine manure depends on biological treatment process, but the highly concentrated ammonia nitrogen is required a pretreatment to expect the appropriate efficiency of the biological treatment process. In this study, pilot experiments have been carried out to estimate of the fit condition about ammonia stripping process as a pretreatment to aerobic liquid- composting. pH adjustment with $Ca(OH)_2$ was economically superior to use of NaOH and optimum pH of ammonia stripping was 12.3, ammonia nitorgen was rapidly removed as pH were increased at $$35^{\circ}C$$. When air stripping is performed before aerobic liquid-stripping, a high initial pH is required for complete ammonia removal and is additional effects such as organic substances, phosphorus, turbidity, and color removal. Stripping process was very efficient in the pretreatment of highly concentrated ammonia nitrogen for composting of swine manure. Emission rate of gaseous ammonia was $0.5355mole\;s^{-1}$ at initial time and $0.0253mole\;s^{-1}$ at finitial time. The fit condition of ammonia stripping in this study were at the temperature of $$35^{\circ}C$$, and the pH of 12.3 during 48 hours.

On the Reliability of the Computational Fire Model Based on the Yield Rate Concept of Combustion Gases (생성율 개념에 기초한 화재모델의 신뢰성에 대한 연구)

  • Kim, Sung-Chan;Ko, Gwon-Hyun;Lee, Seong-Hyuk
    • Fire Science and Engineering
    • /
    • 제23권4호
    • /
    • pp.130-136
    • /
    • 2009
  • The present study has been performed to evaluate the reliability of the fire field model (FDS version 5.2) with yield rate concept of combustion products. The CO and smoke density predicted by FDS model was directly compared with measurement in a reduced scale ISO-9705 room. The GER (global equivalence ratio) concept was used to characterize the CO and smoke density with ventilation condition in the fire compartment. The FDS model tends to under-predict CO concentration and smoke density than those of measurement for the under-ventilated conditions. Also, the discrepancy between predicted and measured result increases as GER increases. In order to improve the reliability of the fire model for performance evaluation of fire safety, the fire model is necessary to be validated in various fire cases as well as develop detailed physical model.

Preparation and Characterization of Nanocrystalline Spinel Ferrites by Chemical Co-precipitation (화학적 공침법을 이용한 침상형 페라이트 합성)

  • Shen, Jiao-Wen;Lim, Yun-Hui;Jo, Young-Min
    • Applied Chemistry for Engineering
    • /
    • 제22권2호
    • /
    • pp.185-189
    • /
    • 2011
  • In this work, nano-sized M-ferrites (M=Co, Ni, Cu, Zn) for the decomposition of carbon dioxide were synthesized by the chemical co-precipitation. From the thermogravimetric analysis, it was clear that the maximum weight loss of each sample took place below $350^{\circ}C$. High temperature calcination resulted in more systematic crystallines, smaller specific surface area and larger particle size. An analysis by FTIR in the range of $375{\sim}406cm^{-1}$ revealed the presence of chelates at the octahedral site, which implies the formation of spinel structure in the ferrites. The current work showed that a $500^{\circ}C$ is the optimum heat treatment temperature of metal ferrites for $CO_2$ decomposition reaction.

Effect of Waste Activated Sludge Mixing Ratio on the Biogas Production in Bioelectrochemical Anaerobic Digestion (생물전기화학혐기소화조를 이용한 바이오가스생산에서 폐활성슬러지 혼합비의 영향)

  • Chung, Jae-Woo;Lee, Myoung-Eun;Seo, Sun-Chul;Ahn, Yongtae
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • 제26권4호
    • /
    • pp.53-61
    • /
    • 2018
  • Anaerobic digestion (AD) is one of the most widely used process that can convert the organic fraction of waste activated sludge (WAS) into biogas. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. Bioelectrochemical, anaerobic digester was used to increase methane yield from waste activated sludge. The influence of anaerobic digestion sludge and raw sludge mixing ratio (3:7, 5:5) on methane yield and organic matter removal efficiency were explored. As a result, when the mixing ratio of bioelectrochemical anaerobic sludge was 5:5 compared with 3:7, the highest methane yields were 294.2 mL $CH_4/L$ (0.63 times increase) and 52.5% (7.5% increase), the bioelectrochemical anaerobic digester(5:5) was more stable in the pH, t otal alkalinity and VFAs, respectively. These results showed that the increase in the mixing ratio of anaerobic digestion sludge was found to be effective for maintaining the stable performance of bioelectrochemical anaerobic digester.