• Title/Summary/Keyword: $COP_c$

Search Result 319, Processing Time 0.032 seconds

Capacity Modulation of a Ground Source Multi-Heat Pump in the Part Load Condtions (축열형 지열원 냉난방 시스템의 단기 성능 특성 연구)

  • Kim, Namtae;Cho, Chanyong;Choi, Jong Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.119-119
    • /
    • 2010
  • 무한 지속 가능한 지열 에너지를 활용한 공조시스템인 지열원 냉난방 시스템은 기존의 공조 시스템보다 열원이 안정적이기 때문에 높은 효율과 우수한 성능을 가지므로, 기후변화협약 대응의 주요수단으로서 기술개발과 보급이 증대되고 있다. 본 연구에서는 대수층 축열 지열원 열펌프 시스템에 대한 실증 연구를 통하여 대수층 축열 지열원 열펌프 시스템의 하절기 냉방 성능을 분석하였다. 대수층 축열 냉난방 시스템은 주입정과 양수정의 2개의 우물공이 설치되어 있으며, 겨울 난방 운전 중에 한 개의 우물공으로부터 지하수를 열펌프로 유입한 후 낮은 온도의 지하수를 타 우물공에 축열하고, 하절기에 겨울에 저온으로 축열된 우물공으로부터 지하수를 열펌프로 유입하여 온도가 증가된 지하수를 타 우물공에 주입한다. 즉, 계절별로 열펌프에서 생성된 냉수와 온수의 대수층 축열을 위하여 계절별로 주입정과 양수정이 바뀌게 된다. 본 연구의 대수층 축열 지열원 열펌프 시스템의 2009년 8월의 주요일자별 시스템 운전 중의 평균 냉방 열펌프 유닛 COP와 냉방 시스템 COP는 각각 4.7과 3.4이상의 우수한 성능을 나타냈다. 또한, 모든 일자에 대하여 외기온도가 $31.6^{\circ}C$$22^{\circ}C$까지 변화가 크게 나타났지만 열펌프 유닛 COP와 시스템 COP의 변화는 미소하였다. 이는 양수정으로부터의 지중 순환수가 운전기간 중에 $17.5^{\circ}C$로 일정하게 유지되었기 때문이다. 양수정과 주입정 사이에 5개의 관측공을 설치하였으며, 양수정 측에 인접한 관측공의 온도는 거의 변화가 없었으며, 단기간이지만 널리 사용되고 있는 수직밀폐형 시스템과 달리 지속적인 냉방운전 중의 양수 온도의 증가는 발생하지 않아 안정적인 성능을 나타냈다. 주입정에 인접한 모니터링 홀의 온도는 심도가 깊은 곳의 온도가 낮은 곳보다 높게 나타났다. 이는 냉방 운전 시 열펌프 유닛의 실외열교환기에서 지중 순환수가 냉매로부터 열을 취득하여 온도가 상승하면서 주입정측에 온열이 축열이 진행되었기 때문으로 분석되며, 하절기의 냉방 운전 시간이 증가할 경우 축열 효과는 더욱 증가할 것으로 예상된다. 양수정과 주입정 중간의 모니터링 홀의 온도는 2009년 8월 가동 중에 온도변화는 없었는데, 이는 양수정과 주입정 사이의 열간섭이 발생하지 않았기 때문으로 분석된다. 일자별로 운전 중의 열펌프 유닛 COP는 차이가 없었지만, 운전 및 정지 시간을 모두 포함한 시스템 소비전력과 냉방용량을 모두 합산하여 산정한 일일 평균 냉방 열펌프 유닛 COP와 냉방 시스템 COP는 일자별로 다소 차이가 발생하였는데, 이는 각 일자별로 열펌프 유닛 가동율의 차이로 인하여 열펌프 유닛 가동 전에 먼저 작동되는 지중순환펌프의 운전 소비전력의 차이와 열펌프의 단속운전 시의 열손실과 추거 소비전력의 차이 때문이다.

  • PDF

Performance Improvement Technology on a Continuous Heating Heat Pump at Frost Condition (착상조건에서 연속난방이 가능한 히트펌프 성능 향상 기술)

  • Jeon, Chang-Duk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.573-577
    • /
    • 2013
  • Heat pumps come into wide use because high energy efficiency can be obtained and diverse heat sources like geothermal heat, waste heat and air are available. It is necessary for an air source heat pump to defrost in order to remove frost on the surfaces of an outdoor heat exchanger. It is impossible for continuous heating if reverse cycle operation is used as defrosting method, furthermore it causes the degradation of COP. In this study an fin-tube heat exchanger with three rows was used as an outdoor coil. One row among three rows of the heat exchanger was used like a condenser in order to remove frost on it, the others were used as evaporator to accomplish continuous heating. Each row was switched in order from a condenser to an evaporator in specified time interval. Tests were carried out during minimum 180 minutes at the defrost-heating test condition(dry bulb temperature $2^{\circ}C$, wet bulb temperature $1^{\circ}C$) described in KS C 9306. Time-averaged COP was about 20% higher than that of conventional defrosting method.

Dynamic Simulation of Ground Source Heat Pump with a Vertical U-tube Ground Heat Exchanger (수직형 U자 관 지중 열교환기를 갖는 지열원 열펌프의 동적 시뮬레이션)

  • Lee, Myung-Taek;Kim, Young-Il;Kang, Byung-Ha
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.5
    • /
    • pp.372-378
    • /
    • 2007
  • GHX (Geothermal Heat Exchanger) design which determines the performance and initial cost is the most important factor in ground source heat pump system. Performance of GHX is strongly dependent on the thermal resistance of soil, grout and pipe. In general, GHX design is based on the static simulation program. In this study, dynamic simulation has been peformed to analyze the variation of system performance for various GHX parameters. Line-source theory has been applied to calculate the variation of ground temperature. The averaged weather data measured during a 10-year period $(1991\sim2000)$ in Seoul is used to calculate cooling and heating loads of a building with a floor area of $100m^2$. The simulation results indicate that thermal properties of borehole play significant effect on the overall performance. Change of grout thermal conductivity from 0.4 to $3.0W/(m^{\circ}C)$ increases COP of heating by 9.4% and cooling by 17%. Change of soil thermal conductivity from 1.5 to $4.0W/(m^{\circ}C)$ increases COP of heating by 13.3% and cooling by 4.4%. Change of GHX(length from 100 to 200 m increases COP of heating by 10.6% and cooling by 10.2%. To study long term performance, dynamic simulation has been conducted for a 20-year period and the result showed that soil temperature decreases by $1^{\circ}C$, heating COP decreases by 2.7% and cooling COP decreases by 1.4%.

Performance Characteristics of a Cascade Refrigeration System with Internal Heat Exchanger using Carbon Dioxide (R744) and Propane (R290) (내부 열교환기 부착 $CO_2-C_3H_8$용 캐스케이드 냉동시스템의 성능 특성)

  • Son, Chang-Hyo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.6
    • /
    • pp.526-533
    • /
    • 2009
  • In this paper, cycle performance analysis of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system with internal heat exchanger is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include subcooling and superheating degree and gas cooling pressure and evaporating temperature in the propane (R290) low temperature cycle and the carbon dioxide (R744) high temperature cycle. The main results were summarized as follows : The COP of cascade refrigeration system of $CO_2-C_3H_8$ (R744-R290) increases with the increasing subcooling degree, but decreases with the increasing superheating degree. The COP of cascade refrigeration system increases with the increasing evaporating temperature, but decreases with the increasing gas cooling pressure. Therefore, superheating and subcooling degree, compressor efficiency, evaporating temperature and gas cooling pressure of $CO_2-C_3H_8$ (R744-R290) cascade refrigeration system have an effect on the COP of this system.

Improvement of Hydrolysis and Bioavailability of Coprecipitated Products of Coptidis Rhizoma and Scutellariae Radix by β-Glucuronidase (베타-글루쿠로니다제에 의한 황련.황금 공침물의 가수분해 및 생체이용률 증가)

  • Kim, Mi-Jeong;Kim, Nam-Soon;Kim, Young-Il;Kim, Dae-Keun;Yang, Jae-Heon
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.2
    • /
    • pp.91-97
    • /
    • 2003
  • During the preparation of decoction from the mixture of Coptidis Rhizoma and Scutellariae Radix, insoluble copreciptate was formed. The coprecipitated product (COP) was composed of berberine and baicalin which was the active ingredient of Coptidis Rhizoma and Scutellariae Radix, respectively. COP was slightly soluble in water and could not be well absorbed after oral administration. This poor bioavailibility might be associated with its poor aqueous solubility. With the purpose of increasing the solubility and bioavailibility of COP, hydrolysis of COP by ${\beta}-glucuronidase$ was carried out. Hydrolyzed products (HOP) of COP were identified and assayed for active ingredients. The partition coefficient study, in situ absorption test, and pharmacokinetic study after oral administration were also performed. COP was found to be consisted of berberine and baicalin with molecular ratio of 1 to 1. This compound was hydrolyzed to berberine and baicalin by ${\beta}-glucuronidase$. The rate of hydrolysis was higher at higher temperature up to $50^{\circ}C$ and higher concentration of ${\beta}-glucuronidase$ up to 2500 unit under our experimental conditions. Baicalein, which is more liphophilic than baicalin, showed greater absorption in small intestine than baicalin did. The plasma concentrations of berberine and baicalein after oral administration of HOP were significantly higer than those of COP. The possible mechanism of increased bioavailibility of berberine and baicalein could be the hydrolysis of COP by ${\beta}-glucuronidase$. On the basis of the above results, it might be said that HOP should be a suitable preparation for increasing the bioavailibility of Coptidis Rhizoma and Scutellariae Radix.

HEATING PERFORMANCE OF AIR SOURCE HEAT PUMP WITH HEAT REGENERATIVE DEVICE USING FIBER BELT

  • Ryou, Y.S.;Chang, J.T.;Kim, Y.J.;Kang, G.C.;Yun, J.H.;Lee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.647-653
    • /
    • 2000
  • In this research the heat regenerative technology was employed to eliminate frosting on evaporator coil and improve COP of the heat pump system. This heat regenerative device(HRD) has very simple structure consisting a geared motor and a porous fiber belt passing through alternatively between cold and warm air duct. The laboratory test showed that the heat pump system with HRD yielded an impressive COP higher than 3.5 at the outside air temperature of $-7^{circ}C$ in heating mode.

  • PDF

Experiment study on Heating Performance of Heat-pump chiller (실외온습도 변화에 따른 히트펌프 칠러의 난방성능에 관한 실험적 연구)

  • Lee, Kwon-Jae;Lee, Sang-Jae;Kim, Jung-Seok;Lee, Soo-Kwang;Park, Kyoung-Man
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.05b
    • /
    • pp.1123-1126
    • /
    • 2010
  • 본 연구에서는 외기온습도에 따른 히트펌프 칠러의 난방성능을 조사하고자 하였다. 난방표준 온도조건에서 건구온도 및 습구온도 변화에 따른 히트펌프 칠러의 난방능력과 COP를 획득하기 위하여 항온항습 챔버와 항온수조를 사용하였다. 실험은 건구온도 $7^{\circ}C{\sim}17^{\circ}C$, 상대습도 67%~87%에서 수행하였다. 외기온도가 증가함에 따라 난방능력은 약 27%, COP는 약 28% 증가하였지만, 상대습도 증가에 따른 난방능력과 COP의 변화는 거의 없었다. 따라서 난방운전 시 건구온도의 영향은 크고, 상대습도의 영향은 미미함을 알 수 있었다.

  • PDF

Simulation of a Polymer-Water Adsorption Refrigerator using Plate-Type Adsorption Heat Exchangers (판형 흡착열교환기를 사용한 폴리머-물 흡착식 냉동기의 성능예측)

  • Kim, Dong-Seon;Lee, Dae-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.2
    • /
    • pp.94-102
    • /
    • 2015
  • A hydroscopic polymer is used as the adsorbent in an adsorption refrigeration system. A pair of plate-type heat exchangers, thinly coated with the polymer, is simulated using a two-dimensional transient model to predict performance of the system. It is predicted that the system would yield 0.57 kW SCP and 0.47 COP at $80^{\circ}C$ heating and $30^{\circ}C$ cooling temperatures. In comparison with a conventional silica gel-water system, the COP is comparable but SCP is about three times larger. The slow mass diffusion rate of the polymer should be improved for better performance.

Experimental Study on the Coefficient of Performance of a Small Absorption Refrigerator (소형 흡수식 냉동기의 성적계수에 관한 실험적 연구)

  • Lee Sun Kyoo;Kim Sang Soo
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.16 no.2
    • /
    • pp.176-184
    • /
    • 1987
  • The purpose of this research is to study the characteristics of the coefficient of perform-ance (COP) of the small absorption refrigeration system. This experimental study is performed with two selected variables, the temperature of the generator and the input temperature of the cooling water. In order to determine the input temperature of the generator which gives maximum COP, the experimental data are obtained with controlling the temperature of the generator in the range of $20-32^{\circ}C$ of the temperature of the cooling water. The range of the generator heat suppling temperature which gives maximum efficiency is about $90-95^{\circ}C.$ The temperature range depends on the characteristics of the equipment unit. The most important result in this experiment is the trends of the COP in accordance with the variation of these temperatures. This trend will furnish the informations and knowledges for designing and operating the absorption refrigerator.

  • PDF

Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures (R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산)

  • Ju, J.M.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF