• Title/Summary/Keyword: $CIEL^*a^*b^*$ and ${\Delta}E{^*}_{ab}$

Search Result 4, Processing Time 0.019 seconds

A Study on Color Management using Optimum Profiling in Soft Proofing (소프트 프루핑에서 최적의 Profiling을 이용한 컬러 관리에 관한 연구)

  • Cha, Jae-Young;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.27 no.1
    • /
    • pp.1-14
    • /
    • 2009
  • The color reproduction of digital still camera does not, in general, match those of the final output device. Because color gamut of these devices is different, it is therefore necessary to take account of a way to match. The way uses the optimized profile to output device an image. This paper proposed a way to create the input profile of digital still camera for standardization soft proofing process. The results of proposed way showed that for input profiles equivalent, good results relatively. In this paper, an experiment was done where the illumination sources used as the standard illumination 5200K and illuminated at a $45^{\circ}$ angle in the best illumination efficiently. The white balance was in mode 'custom' : aperture F11, exposure time 1/60s, ISO50, focal length 80mm. The images were exported and saved as 16bit RGB TIFF(AdobeRGB, sRGB, ProphotoRGB) images. To do the test, the RGB values of the RGB TIFF images are processed through the ICC input profile to arrive at processed $CIEL^*a^*b^*$ values. A profiling tool such as ProfileMaker 5.0 and Monacoprofile 4.8 are used to do this. The processed $CIEL^*a^*b^*$ values are compared to the reference $CIEL^*a^*b^*$ values and these two values are used to calculate a ${\Delta}E{^*}_{ab}$.

  • PDF

A Study on Comparison Evaluation between Proof Test Prints and Domestic Offset Prints (교정 인쇄물과 국내 오프셋 인쇄물의 비교 평가에 관한 연구)

  • Oh, Seung-Jae;Cho, Ga-Ram;Koo, Chul-Whoi
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.29 no.2
    • /
    • pp.15-32
    • /
    • 2011
  • In printing, managing color means that how closely its color reproducts and printing supplier meets customers' requirements. When applying device profiles, it depends on properties of the devices. But color management of domestic digital prints is accomplished more scientifically and objectively than any other printing. According to this paper addresses a method of evaluating between proof prints and offset prints which are produced by identical date on the field. We evaluate two cases normal proof prints and domestic offset prints based on standardized color data analysis and subjective data analysis. We gathered objective data by measuring solid density, $CIEL^*a^*b^*$ and ${\Delta}E^{*_}{ab}$. Furthermore, we evaluated the offset prints and proof prints through human eyes to decide the ranking.

A Study on Production of Optimum Profile Considered Color Rendering in Input Device (입력 장치에서 컬러 랜더링을 고려한 최적의 프로파일 제작에 관한 연구)

  • Koo, Chul-Whoi;Cho, Ga-Ram;Lee, Sung-Hyung
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.28 no.2
    • /
    • pp.117-128
    • /
    • 2010
  • Advancements in digital image have put high quality digital camera into the hands of many image professionals and consumers alike. High quality digital camera images consist originally of raw which have a set of color rendering operation applied to them to produce good images. With color rendering, the raw file was converted to Adobe RGB and sRGB color space. Also color rendering can incorporate factor such as white balance, contrast, saturation. Therefore, in this paper we conduct a study on production of optimum profile considered color rendering in digital camera. To do the experiment, the images were Digital ColorChecker SG target and ColorChecker DC target. A profiling tool was ProfileMaker 5.03. The results were analyzed by comparing in color gamut of $CIEL^*a^*b^*$ color space and calculating ${\Delta}E^*_{ab}$. Also results were analyzed in terms of different $CIEL^*a^*b^*$ color space quadrants based on lightness, chroma.

COMPARISON OF COLOR AND OPACITY OF COPY-MILLED IN-CERAM ALUMINA CORE AND SPINELL CORE (Copy-milled In-Ceram Alumina core와 Spinell core의 색과 불투명도 비교)

  • Bae, Jeong-Sun;Vang, Mong-Sook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.6
    • /
    • pp.756-766
    • /
    • 1999
  • This study was performed to evaluate effect on color and opacity of 3 different copy-milled In-Ceram cores by glass infiltration and porcelain veneering. Color was evaluated by the $CIEL^*a^*b^*$ readings were recorded with a Colorimeter, Color difference value(${\Delta}E^*_{ab}$) was calculated and opacity was represented by the contrast ratio. The variance of each color parameter ($L^*,\;a^*,\;b^*$), color difference value, and opacity change after glass-infiltrated and after veneered with porcelain was compared. Three experimental groups were fabricated as follows. Group 1 (Alumina core) 15 Alumina blanks was infiltrated with originally marketed glass (A1) and veneered with porcelain(A1) Group 2 (modified Alumina core) : 15 Alumina blanks was infiltrated with its associated glass(S11) and veneered with porcelain(A1) Group 3 (Spinell core) : 15 Spinell blanks was infiltrated with originally developed glass(S11) and veneered with porcelain(A1). The results were as follows: 1. After glass infiltration, $L^*$ value showed decrease, $a^*$ value showed decrease only group 1(p<0.001) and $b^*$ value showed increase on group 1, increase on group 2, 3(p<0.001). 2. After porcelain veneering, $L^*$ value showed decrease(p<0.001), $a^*$ value showed increase on group 1, decrease on group 2(p<0.05) and $b^*$ value showed decrease on group 1, increase on group 2, 3 (p<0.001). 3. ${\Delta}E^*_{ab}$ between before and after glass infiltration was more than 13.77, and between after glass infiltration and after porcelain veneering more than 19.63. 4. After glass infiltration and porcelain veneering, Alumina showed the lowest $L^*,\;a^*$ value and highest $b^*$ value among 3 different groups (p<0.05). ${\Delta}E^*_{ab}$ between group 1-2, 1-3 was higher than that of group 2-3. 5. After glass infiltration, opacity showed decrease, Group 1 had the highest opacity(p<0.05), but no significant differences between group 2 and 3. Above results suggest that glass infiltration and porcelain veneering effects on color and opacity of In-Ceram core, and that modified In-Ceram Alumina uses single crowns or bridges like In-Ceram Spinell.

  • PDF