• Title/Summary/Keyword: $CH_2Cl_2$

Search Result 730, Processing Time 0.023 seconds

Molecular Motions of [N(C2H5)4]+ and [N(CH3)4]+ ions by 1H Nuclear Magnetic Resonance Relaxation in [N(C2H5)4]2CoCl4 and [N(CH3)4]2CoCl4 Single Crystals

  • Yoon, Su-A;Lim, Ae-Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.15 no.2
    • /
    • pp.146-156
    • /
    • 2011
  • The line widths and spin-lattice relaxation times of protons in $[N(C_2H_5)_4]_2CoCl_4$ and $[N(CH_3)_4]_2CoCl_4$ single crystals were investigated in the temperature range 160-400 K. The temperature dependences of the spin-lattice relaxation times are attributed to the molecular motions of the ethyl and methyl groups in the $[N(C_2H_5)_4]^+$ and $[N(CH_3)_4]^+$ ions respectively. The NMR line widths indicate that the ethyl groups in $[N(C_2H_5)_4]_2CoCl_4$ have one more degree of freedom than the methyl groups in $[N(CH_3)_4]_2CoCl_4$. The experimental results are interpreted in terms of the reorientations of the methyl and ethyl groups.

Nucleophilic Displacement at a Carbonyl Carbon Atom (ⅩⅢ). Methanolysis of Thiochloroformate in $CH_3OH-CH_3CN$ Mixtures (카르보닐탄소원자의 친핵성 치환반응 (제13보). 메탄올-아세토니트릴 혼합용매에서 Thiochloroformate의 가메탄올 분해반응)

  • Sangmoo La;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.4
    • /
    • pp.288-294
    • /
    • 1980
  • Methanolysis rate constants were determined for $CH_3O(CO)Cl,\;CH_3S(CO)Cl\;and\;CH_3S(CS)Cl\;in\;CH_3OH-CH_3CN$ mixtures. Results show that the rates are not predominantly influenced by the bulk solvent properties but are partly influenced by specific electrophilic solvation.Polarity of the solvent is not a dominant factor but it nevertheless plays a role in charge stabilization of the $S_N1$ like transition state. The methanolysis proceeds through $S_N1$ mechanism for $CH_3S(CS)Cl$ for which both specific solvation of leaving group by methanol and charge stabilization by a high dielectric medium are important, while for $CH_3O(CO)Cl\;methanolysis occurs\;via\;S_N2$ mechanism in which both of the solvent effects are unimportant.

  • PDF

Ring-Opening Polymerization of $\varepsilon$-Caprolactone and Cyclohexene Oxide Initiated by Aluminum $\beta$-Ketoamino Complexes: Steric and Electronic Effect of 3-Position Substituents of the Ligands

  • Liu, Binyuan;Li, Haiqing;Ha, Chang-Sik;Kim, Il;Yan, Weidong
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.441-445
    • /
    • 2008
  • A series of aluminum complexes supported by $\beta$-ketoamino, ligand-bearing, 3-position substituents $LAlEt_2$ ($L=CH_3C(O)C(Cl)=C(CH_3)NAr\;(L_1)$, $L=CH_3C(O)C(H)=C(CH_3)NAr\;(L_2)$, $L=CH_3C(O)C(Ph)=C(CH_3)NAr\;(L_3)$, and $L=CH_3C(O)C(Me)=C(CH_3)NAr\;(L_4)$, $Ar=2,6-^iPr_2C6H_3$) were synthesized in situ and employed in the ring-opening polymerization (ROP) of $\varepsilon$-caprolactone ($\varepsilon$-CL) and cyclohexene oxide (CHO). The 3-position substituents on the $\beta$-ketoamino ligand backbone of the aluminum complexes influenced the catalyst activity remarkably for both ROP of $\varepsilon$-CL and CHO. Aluminum $\beta$-ketoamino complexes displayed different catalytic behavior in ROP of $\varepsilon$-CL and CHO. The order of the catalytic activity of $LAlEt_2$ was $L_1AlEt_2$>$L_2AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$ for ROP of $\varepsilon$-CL, being opposite to the electron-donating ability of the 3-position substituents on the $\beta$-ketoamino ligand, while the order of the catalytic activity for ROP of CHO was $L_1AlEt_2$>$L_3AlEt_2$>$L_4AlEt_2$>$L_2AlEt_2$. The effects of reaction temperature and time on the ROP were also investigated for both $\varepsilon$-CL and CHO.

Syntheses and Reactions of Iridium Complexes Containing Mixed Phosphine-Olefin Ligand: (3-(Diphenylphosphino)propyl)(3-butenyl)phenylphosphine

  • Young-ae W. Park;Devon W. Meek
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.6
    • /
    • pp.524-528
    • /
    • 1995
  • The reaction of [IrCl(cod)]2 with ppol ligand, Ph2PCH2CH2CH2P(Ph)CH2CH2CH=CH2, in ethanol gives an iridium complex, whose structure is converted from an ionic form, [Ir(cod)(ppol)]Cl·2C2H5OH (1),in polar solvents (ethanol, methanol and acetonitrile), to a molecular form, [IrCl(cod)(ppol)], in non-polar solvents (benzene and toluene). The cationic complexes, [Ir(cod)(ppol)]AsF6·1/2C2H5OH and [Ir(cod)(ppol)]PF6·1/2CH3CN, were prepared to compare with the ionic form by 31P NMR spectroscopy. When carbon monoxide is introduced to 1, cod is replaced by CO to give the 5-coordinated complex, [IrCl(CO)(ppol)]. Hydrogenation of 1-octene was not successful in the presence of 1. In order to verify the reason for 1 not behaving as a good catalyst for hydrogenation, electrophilic reactions with HCl, I2 and HBF4·etherate were performed, which yielded the oxidative addition product, [IrHCl2(ppol)], the substitution product, [IrI(cod)(ppol)], and another cationic product, [Ir(cod)(ppol)]BF4, respectively. Thus, the iridium complex is not sufficiently basic to activate hydrogen atoms or the olefin of the ppol ligand.

Kinetic Investigation of Olefin Oxidation by Al(III)-Porphyrin Complexes (Al(lll)-Porphyrin착물에 의한 올레핀 산화반응 메카니즘 연구)

  • Na, Hun-Gil;Han, Man-So
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.1
    • /
    • pp.46-52
    • /
    • 2006
  • studies of olefin oxidation using Al(III)-porphyrin complexes as catalyst are investigated in CH2Cl2, in which NaClO is used as terminal oxidant. Porphyrins are TPP(5,10,15,20-Tetraphenylporphyrin) and (p-X)TPP(X=CH3O, CH3, F, Cl). Olefins are styrene and (p-X)styrene (X=CH3O, CH3, Cl, Br). The values of Km and Vmax are calculated from the Michaelis-Menten equation. According to the substituents of substrate and catalyst, kinetic parameters will be measured. Investigating the correlation between the Michaelis-Menten rate parameters and the substituent constants, we were able to analyze the influence on the changes of catalytic activity or the rate determining step during the process of the formation and the dissociation of the M-oxo-olefin.

Synthesis and Properties of Noel Platinum(IV) Complexes Involving Asymmetric Chiral Diamines as Carrier Ligands

  • 이은주;전무진;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.11
    • /
    • pp.1295-1298
    • /
    • 1999
  • Novel platinum(IV) complexes with asymmetric chiral diamine ligands cis,cis,trans-A2PtCl2(X)2 (X = OH, OCOCH3, OCOC2H5, A2 =NH2CH(CH3)CH2NH(c-C6H11)(apcha), NH2CH(CH3)CH2NH(c-C5H9)(apcpa)) have been prepared. One of the platinum(IV) complexes, (apcpa)PtCl2(OCOC2H5)2(6), was subjected to X-ray crystallographic analysis. The crystal structure of (apcpa)PtCl2(OCOC2H5)2 (monoclinic, P21 (No. 4), a = 9.1391(1), b = 22.2517(1), c = 10.0687(1)Å, β= 109.105(1)。 , V = 1934.80(3)Å3 , Z = 4, R1 = 0.0532) exhibits that the platinum atom achieves a typical octahedral arrangement with two nitrogen atoms in cis positions and two carboxylato group in trans positions. The spectroscopic data disclose that these platinum(IV) complexes are stable and their molecular structures are retained in aqueous solution. The title complexes are highly cytotoxic in vitro but do not exhibit oral anticancer activity in vivo.

Metal Complexes of Sulfur-Containing Ligands (II). Synthesis and Properties of Platinum(II) Complexes of Dithiocarbamates (황함유 리간드의 금속착물(II). 디티오카바메이트류의 백금(II) 착물의 합성과 성질)

  • Chan-Woo Kim;Chang-Su Kim
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.717-722
    • /
    • 1993
  • Reactions of [PtCl$_4$]$^{2-}$ with excess of dithiocarbamates in water lead to facile replacement of the chloro ligand by dithiocarbamato ligand to give [Pt(A)], [Pt(B)$_2$]Cl$_2$, [Pt(C)$_2$], and [Pt(D)(CH$_2$=CH$_2$)Cl]Cl. The complexes of platinum have been characterized by elemental analyses, infrared and UV-visible spectra, and conductivity measurements. Platinum(II)-dithiocarbamate complexes were soluble in polar solvents such as water, alcohol, acetone, dimethylformamide, and dimethylsulfoxide etc. The possible structure was proposed on the basis of elemental analyses and physical properties.

  • PDF

Catalytic Activity of Ga(Ⅲ)-, In(Ⅲ)- and Tl(Ⅲ)-porphyrin Complexes (Ga(Ⅲ), In(Ⅲ) 및 Tl(Ⅲ) 금속이온을 포함한 Metalloporphyrin 착물의 촉매적 특성)

  • Park, Yu Chul;Na, Hun Gil;Kim, Seong Su
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.5
    • /
    • pp.364-370
    • /
    • 1995
  • The catalytic oxidations of several olefins in $CH_2Cl_2$ have been investigated using non-redox metalloporphyrin (M=Ga(III), In(III), Tl(III)) complexes as catalyst and sodium hypochlorite as terminal oxidant. Porphyrins were $(p-CH_3O)TPP,\;(p-CH_3)TPP,\;TPP,\;(p-F)TPP,\;(p-Cl)TPP\;and\;(F_20)TPP$ (TPP=tetraphenylporphyrin), and olefins were $(p-CH_3O)-,\;(p-CH_3)-,\;(p-H)-,\;(p-F)-,\;(p-Cl)-\;and\;(p-Br)styrene$styrene and cyclopentene and cyclohexene. The substrate conversion yield was discussed according to the substituent effects of metalloporphyrin and substrate, and the radius effect of non-redox metal ion. The conversion yield of substrate by changing the substituent of TPP increased in the order of $p-CH_3O$ < $p-CH_3$ < H < p-F < p-Cl, which was consistent with the sequence of $4{\sigma}$ values of TPP. But the substituent effect of substrate on the conversion yield decreased with increasing the ${\sigma}^+$ values on substrates in the order of p-CH3O > p-CH3 > H > p-Cl > p-Br. For the oxidation of several olefins, the complexes of In(III)- and Tl(III)-porphyrins turned out to be more active catalysts than Ga(III)-porphyrin.

  • PDF

Anti-cancer Activity of Styrax japonica Bark Extrats (때죽나무(Styrax japonica) 수피 추출물의 항암 활성)

  • Kwon, Oh-Woong;Kim, Woo-Jin;Lee, Hak-Ju
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.1
    • /
    • pp.68-77
    • /
    • 2014
  • A compound has been isolated from the methanol extract of Styrax japonica bark using conventional chromatographic methods including silica gel chromatography, TLC and HPLC. The molecular formula of Styraxlignolide F analyzed by spectrometric analyses using FAB-MS, NMR was found to be $C_{27}H_{34}O_{11}Na$. The cytotoxicity of the styralignolide F was showed 15.2% in $1.0mg/m{\ell}$ on human kidney cell (HEK 293). As anticancer activity of $CH_2Cl_2$ fraction, over 60% of AGS and MCF-7 cells were inhibited in concentration of $1.0mg/m{\ell}$. In the results of anticancer test using quantification of Bcl-2, $CH_2Cl_2$ fraction showed lower Bcl-2 and p53 expression than those of styraxlignolide F and other fractions. In apoptosis of human lung carcunoma cancer cell (A549), $CH_2Cl_2$ fraction showed the highest inhibition rate (46.9%) and styralignolide F was the next (43.5%). The $CH_2Cl_2$ fraction showed higher anti-cancer activities than isolated substance (styraxlignolide F), probably due to the crude extract showing synergic effects by other components.

The Influence of Strain Rates on the $CH_4/C_2HCl_3/Air$ Counterflow Nonpremixed Flames ($CH_4/C_2HCl_3/Air$ 대향류 비예혼합 화염에서 스트레인율의 영향)

  • Lee, Ki-Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 2000
  • Numerical simulations of counterflow non-premixed $CH_4/C_2HCl_3/Air$ flames added 8%(by volume) C2HCl3 on the fuel side are conducted at atmospheric pressure using a detailed chemical reaction mechanism in order to understand the effect of strain rates. A detailed sensitivity analysis is also performed in order to assess the relative influence of each reaction on the flame established at a strain rate of 200s-1. The structure of flames (i.e., temperature, velocity, and concentration of species) established at both a strain rate of 150s-1 and 300s-1 are investigated. As the strain rate increases, the "flame zone" is restricted to a narrower range and the position of maximum temperature is shifted to the fuel side. The concentrations of major species, H2O, CO, H2, HCl, Cl2, and Cl are decreased with increased strain rate. The reaction involving chlorine, CH4 + Cl $\rightarrow$ CH3 + HCl, instead of the reaction, CH4 + H $\rightarrow$ CH3 + H2 influences the consumption of methane. C2HCl3 + OH $\rightarrow$ CHCl2 + CHOCl and HCl + OH $\rightarrow$ H2O + Cl, are major reactions, through which OH radicals are consumed.

  • PDF