• Title/Summary/Keyword: $CF_4$ Plasma

Search Result 252, Processing Time 0.025 seconds

Dry etching of ZnO thin film using a $CF_4$ mixed by Ar

  • Kim, Do-Young;Kim, Hyung-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1504-1507
    • /
    • 2009
  • In this paper, the etching behavior of ZnO in $CF_4$ plasma mixed Ar was investigated. Previously, the etch rate in $CF_4$/Ar plasma was reported that it is slower than that in Cl containing plasma. But, plasma included Cl atom can produce the by-product such as $ZnCl_2$. In order to solve this film contamination, no Cl containing etching gas is required. We controlled the etching parameter such as source power, substrate bias power, and $CF_4$/Ar gas ratio to acquire the fast etch rate using a ICP etcher. We accomplished the etching rate of 144.85 nm/min with the substrate bias power of 200W. As the energetic fluorine atoms were bonded with Zinc atoms, the fluoride zinc crystal ($ZnF_2$) was observed by X-ray photoelectron spectroscopy (XPS).

  • PDF

The Surface Damage of SBT Thin Film Etched in Cl2CF4/Ar Plasma (Cl2CF4/Ar 유도결합 플라즈마에 의해 식각된 SBT 박막의 표면 손상)

  • 김동표;김창일;이철인;김태형;이원재;유병곤
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.570-575
    • /
    • 2002
  • $SrBi_2Ta_2O_9$ thin films were etched in $Cl_2/CF_4/Ar$ inductively coupled plasma (ICP). The maximum etch rate was 1300 ${\AA}/min$ at 900 W ICP power in Cl$_2$(20%)/$CF_4$(20%)/Ar(60%). As RF source power increased, radicals (F, Cl) and ion ($Ar^+$) increased. The influence of plasma induced damage during etching process was investigated in terms of P-E hysteresis loops, chemical states on the surface, surface morphology and phase of X-ray diffraction. The chemical states on the etched surface were investigated with X-ray spectroscopy and secondary ion mass spectrometry. After annealing $700^{\circ}C$ for 1 h in $O_2$ atmosphere, the decreased P-E hysteresises of the etched SBT thin films in Ar and $Cl_2/CF_4/Ar$ plasma were recovered.

Reduction of Tetrafluoromethane using a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마를 이용한 사불화탄소 저감)

  • Lee, Chae Hong;Chun, Young Nam
    • Korean Chemical Engineering Research
    • /
    • v.49 no.4
    • /
    • pp.485-490
    • /
    • 2011
  • Tetrafluoromethane($CF_4$) has been used as etching and chamber cleaning gases for semiconductor manufacturing processes. These gases need to be removed efficiently because of their strong absorption of infrared radiation and long atmospheric lifetime which causes the global warming effect. We have developed a waterjet gliding arc plasma system in which plasma is combined with waterjet and investigated optimum operating conditions for efficient $CF_4$ destruction through enlarging discharge region and producing large amount of OH radicals. The operating conditions are waterjet flow rate, initial $CF_4$ concentration, total gas flow rate, specific energy input. Through the parametric studies, the highest $CF_4$ destruction of 97% was achieved at 2.2% $CF_4$, 7.2 kJ/L SEI, 9 L/min total gas flow rate and 25.5 mL/min waterjet flow rate.

Effect of Non-thermal plasma Reactor construction by $CF_4$ decomposition ($CF_4$ 분해에 미치는 비열플라즈마 반응기 구조의 영향)

  • Kim, Sun-Ho;Park, Jae-Yun;Ha, Hyun-Jin;Hwang, Bo-Guk;Kim, Kwang-Soo;Rim, Geun-Hie
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07b
    • /
    • pp.912-916
    • /
    • 2002
  • In this paper, the $CF_4$ decomposition rate and by-product were investigated for a simulated two plasma reactors which are metal particle reactor and spiral wire reactor as function of mixed gases. The $CF_4$ decomposition rate by plasma reactor with metal particle electrode had a gain of 20~25[%] over that by plasma reactor with spiral wire electrode. The $CF_4$ decomposition efficiency increases with increasing applied voltage up to the critical voltage for spark formation. The $CF_4$ decomposition efficiency of metal particle reactor was about 80[%] at AC 24[kV]. The $CF_4$ decomposition rate used $Ar-N_2$ as base gas was the highest among three base gases of $N_2$, $Ar-N_2$, air. The by-products of the $N_2$, $Ar-N_2$ base as were similar, but in case of air base they were different.

  • PDF

Study on the Etching Profile and Etch Rate of $SiO_2/Si_3N_4$ by Ar Gas Addition to $CF_4/O_2$ Plasma ($CF_4/O_2$ Plasma에 Ar첨가에 따른 $SiO_2/Si_3N_4$ 에칭 특성 변화)

  • Kim, Boom-Soo;Kang, Tae-Yoon;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.127-128
    • /
    • 2009
  • CCP방식의 식각에 있어서 CF4/O2 Plasma Etch에 Ar을 첨가함으로써 Etch특성이 어떻게 변화하는지를 조사하였다. FE-SEM를 이용하여 Etch Profile를 측정하였다. 또한 Elipsometer와 Nanospec을 이용하여 Etch rate를 측정하였다. Ar의 비율이 전체의 47%정도를 차지하였을 때까지 Etch Profile이 향상되었다가 그이후로는 다시 감소하는 것을 볼 수 있었다. Ar을 첨가할수록 etch rate은 계속 향상되었다. Ar을 첨가하는 것은 물리적인 식각으로 반응하여 Etch rate의 향상과 적정량의 Ar을 첨가했을 때 Etch profile이 향상되는 결과를 얻었다.

  • PDF

The Etching Mechanism of $(Ba, Sr)TiO_3$Thin Films in $Ar/CF_4$ High Density Plasma ($Ar/CF_4$ 고밀도 플라즈마에서 $(Ba, Sr)TiO_3$ 박막의 식각 메카니즘)

  • Kim, Seung-Beom;Kim, Chang-Il
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.5
    • /
    • pp.265-269
    • /
    • 2000
  • $(Ba, Sr)TiO_3$thin films were etched with a magnetically enhanced inductively coupled plasma (MEICP) at different CF4/Ar gas mixing ratios. Experimental was done by varying the etching parameters such as rf power, dc bias and chamber pressure. The maximum etch rate of the BST films was $1800{AA}/min$ under $CF_4/(CF_4+Ar)$ of 0.1, 600 W/350 V and 5 mTorr. The selectivity of BST to Pt and PR was 0.6, 0.7, respectively. X-ray photoelectron spectroscopy (XPS) results show that surface reaction between Ba, Sr, Ti and C, F radicals occurs during the (Ba, Sr)TiO3 etching. To analyze the composition of surface residue after the etching, films etched with different CF_4/Ar$ gas mixing ratio were investigated using XPS and secondary ion mass spectroscopy (SIMS).

  • PDF

The Effects of CF4 Partial Pressure on the Hydrophobic Thin Film Formation on Carbon Steel by Surface Treatment and Coating Method with Linear Microwave Ar/CH4/CF4 Plasma

  • Han, Moon-Ki;Cha, Ju-Hong;Lee, Ho-Jun;Chang, Cheol Jong;Jeon, Chang Yeop
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.2007-2013
    • /
    • 2017
  • In order to give hydrophobic surface properties on carbon steel, the fluorinated amorphous carbon films were prepared by using linear 2.45GHz microwave PECVD device. Two different process approaches have been tested. One is direct deposition of a-C:H:F films using admixture of $Ar/CH_4/CF_4$ working gases and the other is surface treatment using $CF_4$ plasma after deposition of a-C:H film with $Ar/CH_4$ binary gas system. $Ar/CF_4$ plasma treated surface with high $CF_4$ gas ratio shows best hydrophobicity and durability of hydrophobicity. Nanometer scale surface roughness seems one of the most important factors for hydrophobicity within our experimental conditions. The properties of a-C:H:F films and $CF_4$ plasma treated a-C:H films were investigated in terms of surface roughness, hardness, microstructure, chemical bonding, atomic bonding structure between carbon and fluorine, adhesion and water contact angle by using atomic force microscopy (AFM), nano-indentation, Raman analysis and X-ray photoelectron spectroscopy (XPS).

Effects of Operating Parameters on Tetrafluoromethane Destruction by a Waterjet Gliding Arc Plasma (워터젯 글라이딩 아크 플라즈마에 의한 사불화탄소 제거에 미치는 운전변수의 영향)

  • Lee, Chae Hong;Chun, Young Nam
    • Applied Chemistry for Engineering
    • /
    • v.22 no.1
    • /
    • pp.31-36
    • /
    • 2011
  • Tetrafluoromethane ($CF_4$) has been used as the plasma etching and chemical vapor deposition (CVD) gas for semiconductor manufacturing processes. However, the gas need to be removed efficiently because of their strong absorption of infrared radiation and the long atmospheric lifetime which cause global warming effects. A waterjet gliding arc plasma system in which plasma is combined with the waterjet was developed to effectively produce OH radicals, resulting in efficient destruction of $CF_4$ gas. Design factors such as electrode shape, electrode angle, gas nozzle diameter, electrode gap, and electrode length were investigated. The highest $CF_4$ destruction of 93.4% was achieved at Arc 1 electrode shape, $20^{\circ}$ electrode angle, 3 mm gas nozzle diameter, 3 mm electrode gap and 120 mm electrode length.

Etching Characteristics of $SrBi_{2}Ta_{2}O_{9}$ Thin Film with Adding $Cl_2$ into $CF_4$/Ar Plasma ($CF_4$/Ar 플라즈마 내 $Cl_2$첨가에 의한 $SrBi_{2}Ta_{2}O_{9}$ 박막의 식각 특성)

  • 김동표;김창일;이원재;유병곤;김태형;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.9
    • /
    • pp.714-719
    • /
    • 2001
  • SrBi$_2$Ta$_2$$O_{9}$ thn films were etched in inductively coupled Cl$_2$/CF$_4$/Ar plasma. THe maximum etch rate was 1060 $\AA$/min at a Cl$_2$/(Cl$_2$+CF$_4$+Ar)=0.2. The 20% additive Cl$_2$ into CF$_4$/Ar plasma decreased carbon and fluorine radicals, but increased Cl radicals. Sr was effectively removed by reacting with Cl radical because the boiling point of SrCl$_2$(125$0^{\circ}C$) is lower than that of SrF$_2$(246$0^{\circ}C$). The chemical reactions on the etched surface were studied with x-ray photoelectron spectroscopy and secondary ion mass spectrometry. The etching profile was evaluated by using scanning electron microscopy.y.

  • PDF

Etching Characteristics of Gold Thin Films using Inductively Coupled CF4/CI2/Ar Plasma (CF4/CI2/Ar유도 결합 플라즈마에 의한 gold 박막의 식각특성)

  • 김창일;장윤성;김동표;장의구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.7
    • /
    • pp.564-568
    • /
    • 2003
  • The etching of Au thin films have been performed in an inductively coupled CF$_4$/Cl$_2$/Ar plasma. The etch rates were measured as CF$_4$ contents added from 0 to 30 % to Cl$_2$/Ar plasma, of which gas mixing ratio was fixed at 20%. Other parameters were fixed at an rf power of 700 W, a dc bias voltage of 150 V, a chamber pressure of 15 mTorr, and a substrate temperature of 3$0^{\circ}C$. The highest etch rate of the Au thin film was 3700 $\AA$m/min at a 10% additive CF$_4$ into Cl$_2$/Ar plasma. The surface reaction of the etched Au thin films was investigated using x-ray photoelectron spectroscopy (XPS) analysis. XPS analysis indicated that Au reacted with Cl and formed Au-Cl, which is hard to remove on the surface because of its high melting point. The etching products could be sputtered by Ar ion bombardment.