• Title/Summary/Keyword: $C^0$ semigroup

Search Result 34, Processing Time 0.022 seconds

ON THE GENERALIZED ORNSTEIN-UHLENBECK OPERATORS WITH REGULAR AND SINGULAR POTENTIALS IN WEIGHTED Lp-SPACES

  • Imen Metoui
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.149-160
    • /
    • 2024
  • In this paper, we give sufficient conditions for the generalized Ornstein-Uhlenbeck operators perturbed by regular potentials and inverse square potentials AΦ,G,V,c=∆-∇Φ·∇+G·∇-V+c|x|-2 with a suitable domain generates a quasi-contractive, positive and analytic C0-semigroup in Lp(ℝN , e-Φ(x)dx), 1 < p < ∞. The proofs are based on an Lp-weighted Hardy inequality and perturbation techniques. The results extend and improve the generation theorems established by Metoui [7] and Metoui-Mourou [8].

DISKCYCLIC C0-SEMIGROUPS AND DISKCYCLICITY CRITERIA

  • Moosapoor, Mansooreh
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.1
    • /
    • pp.111-119
    • /
    • 2022
  • In this article, we prove that diskcyclic C0-semigroups exist on any infinite-dimensional Banach space. We show that a C0-semigroup (Tt)t≥0 satisfies the diskcyclicity criterion if and only if any of Tt's satisfies the diskcyclicity criterion for operators. Moreover, we show that there are diskcyclic C0-semigroups that do not satisfy the diskcyclicity criterion. Also, we state various criteria for diskcyclicity of C0-semigroups based on dense sets and d-dense orbits.

VISCOSITY APPROXIMATION METHODS FOR NONEXPANSIVE SEMINGROUPS AND MONOTONE MAPPPINGS

  • Zhang, Lijuan
    • East Asian mathematical journal
    • /
    • v.28 no.5
    • /
    • pp.597-604
    • /
    • 2012
  • Let C be a nonempty closed convex subset of real Hilbert space H and F = $\{S(t):t{\geq}0\}$ a nonexpansive self-mapping semigroup of C, and $f:C{\rightarrow}C$ is a fixed contractive mapping. Consider the process {$x_n$} : $$\{{x_{n+1}={\beta}_nx_n+(1-{\beta}_n)z_n\\z_n={\alpha}_nf(x_n)+(1-{\alpha}_n)S(t_n)P_C(x_n-r_nAx_n)$$. It is shown that {$x_n$} converges strongly to a common element of the set of fixed points of nonexpansive semigroups and the set of solutions of the variational inequality for an inverse strongly-monotone mapping which solves some variational inequality.

NUMBER OF WEAK GALOIS-WEIERSTRASS POINTS WITH WEIERSTRASS SEMIGROUPS GENERATED BY TWO ELEMENTS

  • Komeda, Jiryo;Takahashi, Takeshi
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1463-1474
    • /
    • 2019
  • Let C be a nonsingular projective curve of genus ${\geq}2$ over an algebraically closed field of characteristic 0. For a point P in C, the Weierstrass semigroup H(P) is defined as the set of non-negative integers n for which there exists a rational function f on C such that the order of the pole of f at P is equal to n, and f is regular away from P. A point P in C is referred to as a weak Galois-Weierstrass point if P is a Weierstrass point and there exists a Galois morphism ${\varphi}:C{\rightarrow}{\mathbb{p}}^1$ such that P is a total ramification point of ${\varphi}$. In this paper, we investigate the number of weak Galois-Weierstrass points of which the Weierstrass semigroups are generated by two positive integers.

EXISTENCE OF SOLUTIONS FOR IMPULSIVE NONLINEAR DIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS

  • Selvaraj, B.;Arjunan, M. Mallika;Kavitha, V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.13 no.3
    • /
    • pp.203-215
    • /
    • 2009
  • In this article, we study the existence and uniqueness of mild and classical solutions for a nonlinear impulsive differential equation with nonlocal conditions u'(t) = Au(t) + f(t, u(t); Tu(t); Su(t)), $0{\leq}t{\leq}T_0$, $t{\neq}t_i$, u(0) + g(u) = $u_0$, ${\Delta}u(t_i)=I_i(u(t_i))$, i = 1,2,${\ldots}$p, 0<$t_1$<$t_2$<$\cdots$<$t_p$<$T_0$, in a Banach space X, where A is the infinitesimal generator of a $C_0$ semigroup, g constitutes a nonlocal conditions, and ${\Delta}u(t_i)=u(t_i^+)-u(t_i^-)$ represents an impulsive conditions.

  • PDF