• 제목/요약/키워드: $C^0$ element

검색결과 837건 처리시간 0.707초

Hygrothermal analysis of laminated composites using C0 FE model based on higher order zigzag theory

  • Singh, S.K.;Chakrabarti, A.
    • Steel and Composite Structures
    • /
    • 제23권1호
    • /
    • pp.41-51
    • /
    • 2017
  • A $C^0$ FE model developed based on an efficient higher order zigzag theory is used for hygrothermal analysis of laminated composite plates. The $C^0$ FE model satisfies the inter-laminar shear stress continuity at the interfaces and zero transverse shear stress conditions at plate top and bottom. In this model the first derivatives of transverse displacement have been treated as independent variables to circumvent the problem of $C^1$ continuity associated with the above plate theory. In the present theory the above mentioned $C^0$ continuity of the present element is compensated in the stiffness matrix formulation by using penalty parameter approach. In order to avoid stress oscillations observed in the displacement based finite element, the stress field derived from temperature/moisture fields (initial strains) must be consistent with total strain field. Special steps are introduced by field consistent approach (e.g., sampling at gauss points) to compensate this problem. A nine noded $C^0$ continuous isoparametric element is used in the proposed FE model. Comparison of present numerical results with other existing solutions shows that the proposed FE model is efficient, accurate and free of locking.

Temperature Control of the Aluminum Plate using Peltier Element (펠티어 소자를 이용한 알루미늄 판의 온도 제어)

  • 전원석;방두열;최광훈;권대규;김남균;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.764-767
    • /
    • 2004
  • This paper present the temperature control of aluminum plate using Peltier element. Peltier effect is heat pumping phenomena by electric energy as one of the thermoelectric effect. So if current is asserted to Peltier element, it absorbs heat from low temperature side and emits to high temperature side. In this experiment, Peltier element is used to control the temperature of small aluminum plate with ON/OFF control scheme and fan ON/OFF. As the result of experiments, it is proper to act fan only while cooling duration and there exist a proper cooling current to drop temperature rapidly. It takes about 100sec to increase to 7$0^{\circ}C$ and drop to 35$^{\circ}C$ of aluminium plate temperature and about 90sec to increase to 7$0^{\circ}C$ and drop to 4$0^{\circ}C$ in ambient temperature 3$0^{\circ}C$ while fan is on only in cooling duration. Future aim is to realize more rapid temperature control and develop SMHA(special metal hydride actuator) by using Peltier element to heating and cooling.

  • PDF

Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory

  • Shi, G.;Lam, K.Y.;Tay, T.E.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • 제8권6호
    • /
    • pp.623-637
    • /
    • 1999
  • This paper presents a four-noded quadrilateral $C^0$ strain plate element for the analysis of thick laminated composite plates. The element formulation is based on: 1) the third-order shear deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and rotations along element boundaries. Unlike the existing displacement-type composite plate elements based on the third-order theory, which rely on the $C^1$-continuity formulation, the present plate element is of $C^0$-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order expansion of the in-plane displacements through the thickness, the resulting theory and hence elements do not need shear correction factors. The explicit element stiffness matrix makes the present element more computationally efficient than the composite plate elements using numerical integration for the analysis of thick layered composite plates.

alysis by C-1 Finite Element Method (C-1 유한 요소법에 의한 자계해석에 관한 연구)

  • 임달호;김생수;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • 제37권1호
    • /
    • pp.18-24
    • /
    • 1988
  • Up to date, C-0 Finite Element Method which is the means for analyzing electric machinery can not be got the precision magnetic flux density because the magnetic flus density has the discontinuity in the interelement. To supplement this defect, we propose the C-1 finite element method of 9 D.O.F. in this paper. In this method, the vector potential and the magnetic flux density are continuous on the interelement and direction derivative of potential would be an unknown value. We developed the algorithm to apply this method. For examining the utility, we applied this method to analytic model and compared with the result of C-0 Finite Element Method using linear element.

  • PDF

A high precision shear flexible element for bending analysis of thick/thin triangular plate

  • Haldar, S.;Das, P.;Manna, M.C.
    • Structural Engineering and Mechanics
    • /
    • 제18권1호
    • /
    • pp.79-90
    • /
    • 2004
  • A high precision shear deformable triangular element has been proposed for bending analysis of triangular plate. The element has twelve nodes at the three sides and four nodes inside the element. Initially the element has thirty-five degrees of freedom, which has been reduced to thirty by eliminating the degrees of freedom of the internal nodes through static condensation. Plates having different boundary conditions, side ratios (b/a) and thickness ratios (h/a = 0.001, 0.1 and 0.2) have been analyzed using the proposed shear locking free element. Concentrated and uniformly distributed transverse loads have been used for the analysis. The formulation is made based on first order shear deformation theory. For validation of the present element and formulation few results of thin triangular plate have been compared with the analytical solutions. Results for thick plate have been presented as new results.

Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis ($80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석)

  • 김일수;신병철
    • Journal of the Korean Ceramic Society
    • /
    • 제37권3호
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

Dynamic Stability Analysis of Stiffened Tapered Thick Plate with Concentrated Mass on Pasternak Foundations (Pasternak지반에 지지된 집중질량을 갖는 보강된 변단면 후판의 동적안정해석)

  • Lee, Yong-Soo;Kim, Il-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • 제19권12호
    • /
    • pp.1296-1305
    • /
    • 2009
  • This paper has the object of investigating dynamic stability of stiffened tapered thick plate with concentrated mass on Pasternak foundation by means of finite element method and providing kinematic design data for mat of building structures. Finite element analysis of stiffened tapered thick plate is done by use of rectangular finite element with 8-nodes. In order to analysis plate which is supported on Pasternak foundation, the Winkler foundation parameter is varied with 10, 100, 1000 and the shear foundation parameter is 5, 10, concentrated mass is $0.25m_c$, $1.0m_c$, tapered ratio is 0.25, 0.5. The ratio of In-plane force to critical load is applied as $0.4\sigma_{cr},\;0.6\sigma_{cr},\;0.8\sigma_{cr}$ respectively. This paper analyzed varying tapered ratio.

C0-type Reddy's theory for composite beams using FEM under thermal loads

  • Fan, Xiaoyan;Wu, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.457-471
    • /
    • 2016
  • To analyze laminated composite and sandwich beams under temperature loads, a $C^0$-type Reddy's beam theory considering transverse normal strain is proposed in this paper. Although transverse normal strain is taken into account, the number of unknowns is not increased. Moreover, the first derivatives of transverse displacement have been taken out from the in-plane displacement fields, so that the $C^0$ interpolation functions are only required for the finite element implementation. Based on the proposed model, a three-node beam element is presented for analysis of thermal responses. Numerical results show that the proposed model can accurately and efficiently analyze the thermoelastic problems of laminated composites.

Comparison of Stress Intensity Factors for Longitudinal Semi-elliptical Surface Cracks in Cyclindrical Pressure Vessels (내압이 작용하는 원통형용기에 대한 축방향 표면결함의 응력확대계수 계산방법 비교)

  • Moonn, H.R.;Jang, C.H.
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.622-627
    • /
    • 2001
  • The object of this paper is to compare stress intensity factor that be calculated by Raju-Newman's equation, finite element method, and Vessel INTegrity analysis inner flaws(VINTIN) program for longitudinal semi-elliptical cracks in cylindrical vessel under inner pressure. For this, three-dimensional finite-element analyses were performed to obtain the stress intensity factors for various surface cracks with t/R = 0.1. The finite element meshes were designed for various crack shapes with t/R of 0.1. The crack depth to thickness ratio, a/t, was set to 0.2 and 0.5 matching Raju-Newman's equation. The crack depth to length ratio, a/c, was set to 0.2 and 0.4 in the same way and 0.33 was added to extend the range of crack configuration. Finite Element Analyses(FEA) were performed using the commercial FEA program ABAQUS. The results showed that the Raiu-Newman solutions were about 4-10% lower than FEA's using symmetric model of one-eighth of a vessel and close to those of FEA using symmetric model or one-forth or a vessel. Ana VINTIN solutions were nearly equal to those or Raju-Newman.

  • PDF

A New and Efficient C0 Laminated Curved Beam Element (효율적인 C0 적층 곡선보 요소의 개발)

  • Kim, Jin-Gon;Kang, Sang-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제27권4호
    • /
    • pp.559-566
    • /
    • 2003
  • In this study, we present a new highly accurate two-dimensional curved composite beam element. The present element, which is based on the Hellinger-Reissner variational principle and classical lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the (9x9) element stiffness matrix. It should be noted that the stacking sequences without transverse deformation to the load plane makes a two dimensional analysis of curved composite beams practically useful . Several numerical examples confirm the superior locking-free behavior of the present higher-order laminated curved beam element.