• Title/Summary/Keyword: $C^*$-integral

Search Result 663, Processing Time 0.026 seconds

THE INTEGRATION BY PARTS FOR THE C-INTEGRAL

  • Park, Jae Myung;Lee, Deok Ho;Yoon, Ju Han;Yu, Young Hyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.3
    • /
    • pp.607-613
    • /
    • 2009
  • In this paper, we define the C-integral and prove the integration by parts formula for the C-integral.

  • PDF

A bounded convergence theorem for the operator-valued feynman integral

  • Ahn, Byung-Moo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.465-475
    • /
    • 1996
  • Fix t > 0. Denote by $C^t$ the space of $R$-valued continuous functions x on [0,t]. Let $C_0^t$ be the Wiener space - $C_0^t = {x \in C^t : x(0) = 0}$ - equipped with Wiener measure m. Let F be a function from $C^t to C$.

  • PDF

STABILITY THEOREMS OF THE OPERATOR-VALUED FUNCTION SPACE INTEGRAL ON $C_0(B)$

  • Ryu, K.-S;Yoo, S.-C
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.791-802
    • /
    • 2000
  • In 1968, Cameron and Storvick introduce the definition and the theories of the operator-valued function space integral. Since then, the stability theorems of the integral was developed by Johnson, Skoug, Chang etc [1, 2, 4, 5]. Recently, the authors establish the existence theorem of the operator-valued function space [8]. In this paper, we will prove the stability theorems of the operator-valued function space integral over paths in abstract Wiener space $C_0(B)$.

  • PDF

CHANGE OF SCALE FORMULAS FOR WIENER INTEGRAL OVER PATHS IN ABSTRACT WIENER SPACE

  • Kim, Byoung-Soo;Kim, Tae-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.75-88
    • /
    • 2006
  • Wiener measure and Wiener measurability behave badly under the change of scale transformation. We express the analytic Feynman integral over $C_0(B)$ as a limit of Wiener integrals over $C_0(B)$ and establish change of scale formulas for Wiener integrals over $C_0(B)$ for some functionals.

BOUNDARY-VALUED CONDITIONAL YEH-WIENER INTEGRALS AND A KAC-FEYNMAN WIENER INTEGRAL EQUATION

  • Park, Chull;David Skoug
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.763-775
    • /
    • 1996
  • For $Q = [0,S] \times [0,T]$ let C(Q) denote Yeh-Wiener space, i.e., the space of all real-valued continuous functions x(s,t) on Q such that x(0,t) = x(s,0) = 0 for every (s,t) in Q. Yeh [10] defined a Gaussian measure $m_y$ on C(Q) (later modified in [13]) such that as a stochastic process ${x(s,t), (s,t) \epsilon Q}$ has mean $E[x(s,t)] = \smallint_{C(Q)} x(s,t)m_y(dx) = 0$ and covariance $E[x(s,t)x(u,\upsilon)] = min{s,u} min{t,\upsilon}$. Let $C_\omega \equiv C[0,T]$ denote the standard Wiener space on [0,T] with Wiener measure $m_\omega$. Yeh [12] introduced the concept of the conditional Wiener integral of F given X, E(F$\mid$X), and for case X(x) = x(T) obtained some very useful results including a Kac-Feynman integral equation.

  • PDF

SOME INTEGRAL TRANSFORMS AND FRACTIONAL INTEGRAL FORMULAS FOR THE EXTENDED HYPERGEOMETRIC FUNCTIONS

  • Agarwal, Praveen;Choi, Junesang;Kachhia, Krunal B.;Prajapati, Jyotindra C.;Zhou, Hui
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.591-601
    • /
    • 2016
  • Integral transforms and fractional integral formulas involving well-known special functions are interesting in themselves and play important roles in their diverse applications. A large number of integral transforms and fractional integral formulas have been established by many authors. In this paper, we aim at establishing some (presumably) new integral transforms and fractional integral formulas for the generalized hypergeometric type function which has recently been introduced by Luo et al. [9]. Some interesting special cases of our main results are also considered.

WEIGHTED INTEGRAL INEQUALITIES FOR MODIFIED INTEGRAL HARDY OPERATORS

  • Chutia, Duranta;Haloi, Rajib
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.757-780
    • /
    • 2022
  • In this article, we study the weak and extra-weak type integral inequalities for the modified integral Hardy operators. We provide suitable conditions on the weights ω, ρ, φ and ψ to hold the following weak type modular inequality $${\mathcal{U}}^{-1}\({\int_{{\mid}{\mathcal{I}}f{\mid}>{\gamma}}}\;{\mathcal{U}}({\gamma}{\omega}){\rho}\){\leq}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}(C{\mid}f{\mid}{\phi}){\psi}\),$$ where ${\mathcal{I}}$ is the modified integral Hardy operators. We also obtain a necesary and sufficient condition for the following extra-weak type integral inequality $${\omega}\(\{{\left|{\mathcal{I}}f\right|}>{\gamma}\}\){\leq}{\mathcal{U}}{\circ}{\mathcal{V}}^{-1}\({\int}_{0}^{\infty}{\mathcal{V}}\(\frac{C{\mid}f{\mid}{\phi}}{{\gamma}}\){\psi}\).$$ Further, we discuss the above two inequalities for the conjugate of the modified integral Hardy operators. It will extend the existing results for the Hardy operator and its integral version.

SOME EXPRESSIONS FOR THE INVERSE INTEGRAL TRANSFORM VIA THE TRANSLATION THEOREM ON FUNCTION SPACE

  • Chang, Seung Jun;Chung, Hyun Soo
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.6
    • /
    • pp.1261-1273
    • /
    • 2016
  • In this paper, we analyze the necessary and sufficient condition introduced in [5]: that a functional F in $L^2(C_{a,b}[0,T])$ has an integral transform ${\mathcal{F}}_{{\gamma},{\beta}}F$, also belonging to $L^2(C_{a,b}[0,T])$. We then establish the inverse integral transforms of the functionals in $L^2(C_{a,b}[0,T])$ and then examine various properties with respect to the inverse integral transforms via the translation theorem. Several possible outcomes are presented as remarks. Our approach is a new method to solve some difficulties with respect to the inverse integral transform.