• Title/Summary/Keyword: $Bi_O_3$

Search Result 1,352, Processing Time 0.031 seconds

Characterization of Size distribution of Anion Species in Atmospheric Aerosols (대기에어로졸중 음이온성분에 대한 입경분포의 변화특성)

  • 최금찬;박정호;임경택
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.124-129
    • /
    • 1994
  • Aerosol size distribution was determined using Anderson sampler for the anions( sulfate nitrate and chloride ) and TSP. Ionic species concentration and size distribution have been investigated in the daytime and nightime individually. Size classified samples were extracted with distilled water and analyzed for C $l^{[-10]}$ , N $O_3$$^{[-10]}$ and S $O_4$$^{2-}$, by ion chromatography. The size distribution of these ions and TSP was analyzed to investigate the seasonal and diurnal variation of concentrations as follows: (1)Size distribution of TSP showed bi- modal type in the daytime, but indicated tri-mode distribution in the nightime without any seasonal variation. (2)Sulfate concentrations were higher in fine- mode both in the daytime and nightime but fraction of sulfate was higher in coarse-mode during the Yellow Sand Period. (3)Nitrate and Chloride ions are dominant in fine-mode in winter while dominant in coarse-mode in the summer.

  • PDF

Dielectric and Piezoelectric Characteristic of Low Temperature Sintering PMN-PNN-PZT Ceramics according to the Heating Rate (승온속도에 따른 저온소결 PMN-PNN-PZT 세라믹스의 유전 및 압전특성)

  • Kim, Kook-Jin;Yoo, Ju-Hyun;Hong, Jae-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.253-254
    • /
    • 2007
  • In this study, in order to develop low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were fabricated using $Li_2CO_3-Bi_2O_3$-CuO as sintering aids and their piezoelectric and dielectric characteristics were investigated as a function of heating rate. At sintering temperature of $900^{\circ}C$, with increasing heating rate, electromechanical coupling factor(kp), mechanical quality factor(Qm) and dielectric constant $({\varepsilon}_r)$ were increased.

  • PDF

Characteristics of a planar Bi-Sb multijunction thermal converter with Pt-heater (백금 히터가 내장된 평면형 Bi-Sb 다중접합 열전변환기의 특성)

  • Lee, H.C.;Kim, J.S.;Ham, S.H.;Lee, J.H.;Lee, J.H.;Park, S.I.;Kwon, S.W.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.154-162
    • /
    • 1998
  • A planar Bi-Sb multijunction thermal converter with high thermal sensitivity and small ac-dc transfer error has been fabricated by preparing the bifilar thin film Pt-heater and the hot junctions of thin film Bi-Sb thermopile on the $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$-diaphragm, which functions as a thermal isolation layer, and the cold junctions on the dielectric membrane supported with the Si-substrate, which acts as a heat sink, and its ac-dc transfer characteristics were investigated with the fast reversed dc method. The respective thermal sensitivities of the converter with single bifilar heater were about 10.1 mV/mW and 14.8 mV/mW in the air and vacuum, and those of the converter with dual bifilar heater were about 5.1 mV/mW and 7.6 mV/mW, and about 5.3 mV/mW and 7.8 mV/mW in the air and vacuum for the inputs of inside and outside heaters, indicating that the thermal sensitivities in the vacuum, where there is rarely thermal loss caused by gas, are higher than those in the air. The ac-dc voltage and current transfer difference ranges of the converter with single bifilar heater were about ${\pm}1.80\;ppm$ and ${\pm}0.58\;ppm$, and those of the converter with dual bifilar heater were about ${\pm}0.63\;ppm$ and ${\pm}0.25\;ppm$, and about ${\pm}0.53\;ppm$ and ${\pm}0.27\;ppm$, respectively, for the inputs of inside and outside heaters, in the frequency range below 10 kHz and in the air.

  • PDF

Effect of Glass Composition on the Optical Properties of Color Conversion Glasses for White LED (유리조성에 따른 백색 LED용 색변환 유리의 광특성)

  • Huh, Cheolmin;Hwang, Jonghee;Lim, Tae-Young;Kim, Jin-Ho;Lee, MiJai;Yoo, Jong-Sung;Park, Tae-Ho;Moon, Jooho
    • Korean Journal of Materials Research
    • /
    • v.22 no.12
    • /
    • pp.669-674
    • /
    • 2012
  • Yellow phosphor dispersed color conversion glasses are promising phosphor materials for white LED applications because of their good thermal durability, chemical stability, and anti-ultraviolet property. Six color conversion glasses were prepared with high Tg and low Tg specimens of glass. Luminous efficacy, luminance, CIE (Commission Internationale de l'Eclairage) chromaticity, CCT (Correlated Color Temperature), and CRI (Color Rendering Index) of the color conversion glasses were analyzed according to the PL spectrum. Color conversion glasses with high Tg glass frit, sintered at higher temperature, showed better luminous properties than did color conversion glasses with low Tg glass frit. The characteristics of the color conversion glass depended on the glass composition rather than on the sintering temperature. The XRD peaks of the YAG phosphor disappeared in the color conversion glass with major components of $B_2O_3$-ZnO-$SiO_2$-CaO and, in the XRD results, new crystalline peaks of $BaSi_2O_5$ appeared in the color conversion glass with major components of $Bi_2O_3$-ZnO-$B_2O_3$-MgO. The characteristics of CIE chromaticity, CCT, and the CRI of low Tg color conversion glasses showed worse color properties than those of high Tg color conversion glasses. However, these color characteristics of low Tg glasses were improved by thickness variation. So color conversion glasses with good characteristics of both luminous and color properties were attained.

Effect of firing temperature and degree of lamination on microstructure and electrical properties of ZnO-based multilayered ceramic chip varistors (소성온도와 적층수가 ZnO계 적층형 바리스터의 미세구조와 전기적 특성에 미치는 영향)

  • Kim, Chul-Hong;Kim, Jong-Hwa;Kim, Jin-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.126-129
    • /
    • 2003
  • The electrical properties of a ZnO-based multilayered chip varistor (abbreviated as MLV) were studied as functions of firing condition and the degree of lamination. The fundamental varistor characteristics such as nonlinear coefficient and breakdown voltage were independent of the degree of lamination. As the number of the laminated ceramic sheets increased, however, not only the energy handling capability but also the capacitance and the leakage current which are relevant to delayed response to the voltage surge and the pre-breakdown energy loss, respectively, increased. With the increase of firing temperature between $950^{\circ}C$ and $1150^{\circ}C$, both the capacitance and the leakage current of the MLV increased due mainly to the grain growth of ZnO and the volatilization of $BiO_2O_3$. High performance MLVs with clear electrode pattern were obtained at the firing temperature range of $l000{\sim}1050^{\circ}C$ in this experiment.

  • PDF

Transparent Capacitor of the $Bi_2Mg_{2/3}Nb_{4/3}O_7$(BMNO)-Bi Nanostructured Thin Films grown at Room Temperature

  • Song, Hyeon-A;Na, Sin-Hye;Jeong, Hyeon-Jun;Yun, Sun-Gil
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.20.2-20.2
    • /
    • 2011
  • BMNO dielectric materials with a pyrochlore structure have been chosen and they have quite high dielectric constants about 210 for the bulk material. In the case of thin films, 200-nm-thick BMNO films deposited at room temperature showed a low leakage current density of about $10^{-8}\;A/cm^2$ at 3 V and a dielectric constant of about 45 at 100 kHz. Because high dielectric constant BMNO thin films kept an amorphous phase at a high temperature above $900^{\circ}C$. High dielectric constant BMNO thin films grown at room temperature have many applications for flexible electronic devices. However, because the dielectric constant of the BMNO films deposited at room temperature is still low, percolative BMNO films (i.e., those were grown in a pure argon atmosphere) sandwiched between ultra-thin BMNO films grown in an oxygen and argon mixture have greater dielectric constants than standard BMNO films. However, they still showed a leakage problem at a high voltage application. Accordingly, a new nano-structure that uses BMNO was required to construct the films with a dielectric constant higher than that of its bulk material. The fundamental reason that the BMNO-Bi nano-composite films grown by RF-Sputtering deposition had a dielectric constant higher than that of the bulk material was addressed in the present study. Also we used the graphene as bottom electrode instead of the Cu bottom electrode. At first, we got the high leakage current density value relatively. but through this experiment, we could get improved leakage current density value.

  • PDF

Chimie Douce Reaction to Layered High-$T_c$ Superconducting / Super-ionic Conducting Heterostructures

  • Kim, Young-Il;Hwang, Seong-Ju;Yoo, Han-Ill;Choy, Jin-Ho
    • The Korean Journal of Ceramics
    • /
    • v.4 no.2
    • /
    • pp.95-98
    • /
    • 1998
  • We have developed new type of superconducting-superionic conducting nanohybrids, $Ag_xI_wBi_2Sr_2Ca_{n-1}Cu_nO_y$ (n=1 and 2) by applying the chimie douce reaction to the superconducting Bi-based cuprates. These nanohybrids can be achieved by the stepwise intercalation whereby the $Ag^+$ ion is thermally diffused into the pre-intercalated iodine sublattice of $IBi_2Sr_2Ca_{n-1}Cu_nO_y$. According to the X-ray diffraction analysis, the Ag-I intercalates are found to have an unique heterostructure in which the superionic conducting Ag-I layer and the superconducting $IBi_2Sr_2Ca_{n-1}Cu_nO_y$ layer are regularly interstratified with a remarkable basal increment of ~7.3$\AA$. The systematic XAS studies demonstrate that the intercalation of Ag-I accompanies the charge transfer between host and guest, giving rise to a change in hole concentration of $CuO_2$ layer and to a slight $T_c$ change. The Ag K-edge EXAFS result reveals that the intercalated Ag-I has a $\beta$-AgI-like local structure with distorted tetrahedral symmetry, suggesting a mobile environment for the intercalated $Ag^+$ ion. In fact, from ac impedance analyses, we have found that the Ag-I intercalates possess a fast ionic conductivity ($\sigma_i=10^{-1.4}\sim 10^{-2.6}\Omega^{-1}\textrm{cm}^{-1}\;at\;270^{\circ}C$ with an uniform activation energy ($\DeltaE_a=0.22\pm 0.02$ eV). More interesting finding is that these intercalates exhibit high electronic conducting as well as ionic ones ($t_i$=0.02~0.60) due to their interstratified structure consisting of superionic conducting and superconducting layers. In this respect, these new intercalates are expected to be useful as an electrode material in various electrochemical devices.

  • PDF

Effect of Glass Frit in $TiO_2$ Electrode for DSSCs (Glass Frit을 이용한 염료감응 태양전지의 광 특성 연구)

  • Kim, Jongwoo;Jeon, Jaeseung;Kim, Dongsun;Hwang, Seongjin;Kim, Hyungsun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.75.1-75.1
    • /
    • 2010
  • Dye sensitized solar cells(DSSCs) have been extensively studied due to their various advantages such as low production cost, colorful design, and eco-friendly process. Long optical path length is one of the most effective method to improve light harvest efficiency for DSSCs. Multi-layered $TiO_2$ nano-structured film with scattering layer has been studied to generate scattering effect by many researchers. It was expected that the difference of refractive index between $TiO_2$ particles and glass frit would generate the light scattering effect and provide the long optical path length. Therefore, to enhance the scattering effect, the frits of $Bi_2O_3-B_2O_3$-ZnO glass system that has the different refractive index were added to $TiO_2$ pastes in this study. First of all, the absorbance and haze factor of $TiO_2$ electrode with dyes and the refractive index of glass frit and $TiO_2$ were measured, respectively. To study the effect of frits, the efficiencies of DSSCs added glass frit and without glass frit were compared. Our results showed slightly higher efficiency with the different absorbance and haze factor of $TiO_2$ and glass frit. It was considered that the light scattering effect would be improved with adding frits to $TiO_2$ paste. Our preliminary studies will be useful for increasing efficiency of DSSCs.

  • PDF

Measurement of Energy Dependent Differential Neutron Capture Cross-section of Natural Sm by Using a Continuous Neutron Flux below (연속에너지 중성자에 대한 천연 Sm의 중성자 포획단면적 측정)

  • Yoon, Jungran
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.337-341
    • /
    • 2016
  • We measured the neutron capture cross-section of natural Sm(n,${\gamma}$) reaction in the energy regions from 0.003 to 10 eV. The 46-MeV electron linear accelerator of Research Reactor Institute, Kyoto University was used for generating a continuous neutron source. The neutron time-of-flight method was adopted for energy measurement. An assembly of BGO($Bi_4Ge_3O_{12}$) scintillators composed of 12 pieces of BGO crystals measured prompt gamma rays from Sm(n,${\gamma}$) reaction. The BGO assembly was located at a distance of $12.7{\pm}0.02m$ from the neutron source. In order to determine the neutron flux impinging on the Sm, the $^{10}B(n,{\alpha}{\gamma})^7Li$ standard cross-section were used. Natural Sm(n,${\gamma}$) reaction measurement result of the neutron capture cross-section was compared with the results of evaluation of the BROND-2.2 and the previous experimental data of J. C. Chou and V. N. Kononov.