• Title/Summary/Keyword: $Bi_O_3$

Search Result 1,352, Processing Time 0.029 seconds

Ferroelectric and Magnetic Properties of BiFeO3 Thin Films Deposited on SrTiO3 Substrate (SrTiO3기판 위에 증착한 BiFeO3박막의 강유전 및 자기적 특성)

  • Lee, Eun-Gu;Kim, Sun-Jae;Lee, Jae-Gab
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.358-362
    • /
    • 2008
  • $BiFeO_3$ films were hetero-epitaxially grown on $SrTiO_3$ substrate with a various orientation by pulse laser deposition. $BiFeO_3$ films grown on (111) $SrTiO_3$ substrate have a rhombohedral structure, identical to that of single crystals. On the other hand, films grown on (110) or (001) $SrTiO_3$ substrate are monoclinically distorted from the rhombohedral structure due to the epitaxial constraint. The easy axis of spontaneous polarization is close to [111] for the variously oriented films. Dramatically enhanced polarization and magnetization have been found for $BiFeO_3$ thin films grown on $SrTiO_3$ substrate comparing to that of $BiFeO_3$ crystals. The results are explained in terms of an epitaxially-induced transition between cycloidal and homogeneous spin states, via magneto-electric interactions.

Fire-Retardation Properties of Polyurethane Nanocomposite by Filling Inorganic Nano Flame Retardant (폴리우레탄 복합체의 무기난연재료 충전에 의한 난연 특성)

  • Son, Bok-Gi;Hwang, Taek-Sung;Goo, Dong-Chul
    • Polymer(Korea)
    • /
    • v.31 no.5
    • /
    • pp.404-409
    • /
    • 2007
  • Polyurethane nanocomposites with inorganic nano fillers for the improvement thermal stability were prepared by the urethane reaction. Fire retardation properties of polyurethane nanocomposites were investigated by cone calorimeter and limited oxygen index (LOI). Maximum heat release rate of MMT-PU and $Bi_2O_3-PU$ polyurethane nanocomposites were decreased as 50% than polyurethane matrix and fire retardation properties of $MMT/Bi_2O_3-PU$ nanocomposte had the best improvement. The LOI of polyurethane nanocomposites also were improved as filling fillers in the nanocomposites over 20. The maximum heat release rates of MMT-PU, $Bi_2O_3-PU\;and\;MMT/Bi_2O_3-PU$ polyurethane nanocomposites were 764, 707, $635kW/m^2$, respectively and $MMT/Bi_2O_3-PU$ polyurethane nanocomposite exhibited the highest value of fire-retardant. We confirmed that polyurethane nanocomposites improved the fire retardation properties.

Preparation of Bi2O3-PbO-SrO-CaO Coating Sol for Wiring and Superconductivity and Its properties

  • Jung, Jee-Sung;Iwasaki, Mitusnobo;Park, Won-Kyu
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.147-151
    • /
    • 2007
  • Cu-free multi-component sol, of which final oxide composition becomes $Bi_{1.9}Pb{0.35}SrCaO,\;Bi_{1.8}Pb_{0.2}SrCaO\;and\;Bi_{1.5}SrCaO$, respectively, was prepared through sol-gel route and coated on a bare Cu substrate. Starting materials were metal-alkoxides as follows.; [$Bi(OC_{2}H_{5})_{3}\;Pb(O^{1}C_{3}H_{7})_{2},\;Sr(O^{i}C_{3}H_{7})_{2},\;Ca(OC_{2}H_{5})_{2}$] as a reagent grade. Transparent light yellowish sol was obtained in the case of $Bi_{1.9}Pb_{0.35}SrCaO\;and\;Bi_{1.8}Pb_{0.2}SrCaO$ composition and $Bi_{1.5}SrCaO$ composition's sol was light greenish. Each sol was repeatedly dip-coated on Cu substrate four times and pre-heated at $400^{\circ}C$ and finally heat-treated in the range of $740{\sim}900^{\circ}C$. In the results, crystalline phases confirmed by XRD were (2201) orthorhombic and monoclinic phases. However, only $Bi_{1.9}Pb_{0.35}SrCaO_{x}$ composition showed pseudo-superconductive behavior after heat-treatment at $900^{\circ}C$ for 12 seconds and then onset temperature was 77 K, even though it did not exhibit zero resistance below Tc.

Study on Low-Temperature sintering of Co2Z type Ba ferrites for chip inductor (Chip inductor용 Co2Z type Ba-ferrite의 저온소결에 관한 연구)

  • 조균우;한영호;문병철
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.5
    • /
    • pp.195-200
    • /
    • 2002
  • Low temperature sintering of Co$_2$Z type Ba ferrites with various oxide additives has been studied. Co$_2$Z phase was obtained by 2 step calcination and XRD peaks showed a good agreement with the peaks of the standard Co$_2$Z phase, except for some minor extra peaks. ZnO-B$_2$O$_3$ glass, ZnO-B$_2$O$_3$ and CuO, ZnO-B$_2$O$_3$ and Bi$_2$O$_3$, and ZnO-Bi$_2$O$_3$ glass were added to lower sintering temperatures. Specimens were sintered at the temperature range between 900 $^{\circ}C$ and 1000 $^{\circ}C$. In the single addition of ZnO-B$_2$O$_3$ glass, the specimen with 7.5 wt% showed the highest shrinkage. Specimens with complex addition of ZnO-B$_2$O$_3$ glass with CuO or Bi$_2$O$_3$ showed higher shrinkages and initial permeabilities than single addition of ZnO-B$_2$O$_3$ glass. Shrinkages and initial permeabilities of the specimens with ZnO-Bi$_2$O$_3$ glass were higher than those of ZnO-B$_2$O$_3$ glass addition.

Effects of Grain-Size Distribution on the Breakdown Voltage in ZnO Varistors (입도분포가 ZnO 바리스터의 임계전압에 미치는 영향)

  • 김경남;한상목;김대수
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.199-205
    • /
    • 1993
  • Effects of grain size distribution on the breakdown voltage of ZnO varistors were investigated in the ZnO-Bi2O3-CoO-Sb2O3 and ZnO-Bi2O3-CoO-Sb2O3-Cr2O3 systems, respectively. The grain size was increased with increasing sintering temperature maintaining lognormal distribution in both systems. The width of grain size distribution of ZnO-Bi2O3-CoO-Sb2O3 system was narrower than that of ZnO-Bi2O3-CoO-Sb2O3 system. The breakdown voltage(Vb) was decreased by increasing sintering temperature(1000~135$0^{\circ}C$) and sintering time(0.5~5hr), due to the enhancement of ZnO grain growth. The current path of the ZnO varistor was dependent on the distribution of the largest grains (chains of long grains) between the electrodes.

  • PDF

Preparation of dielectric Bi4-xLaxTi3O12 (x~2) from K2La2Ti3O10 via exfoliation and restacking routes (박리화와 재적층법을 통한 K2La2Ti3O10부터 유전성 Bi4-xLaxTi3O12(x~2)의 합성)

  • Jeon, A Young;Ko, Jieun;Kim, Jong-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • We have successfully synthesized $Bi_{4-x}La_xTi_3O_{12}$ (x~2) having Aurivillius-type layered perovskite structure from exfoliated layered perovskite oxide of $K_2La_2Ti_3O_{10}$ with Ruddlesden-Popper structure. The reaction between the exfoliated lanthanum titanate nanosheets and BiOCl nanocrystal resulted in the formation of polycrystalline $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after heating above $700^{\circ}C$. Colloidal suspension of the nanosheets could be obtained by intercalating ethylamine (EA) into the protonated lanthanum titanate, $H_2La_2Ti_3O_{10}$, derived from $K_2La_2Ti_3O_{10}$. Transmission electron microscopic (TEM) analysis show that the exfoliated lanthanium titanate nanosheets have a thickness of a few nano meters. According to X-ray diffraction (XRD) analysis, the exfoliated lanthanium titanate was found to be transformed into $Bi_{4-x}La_xTi_3O_{12}$ (x~2) after restacking with BiOCl and subsequent thermal treatment at > $700^{\circ}C$.

A Study on the Phase Change of Cubic Bi1.5Zn1.0Nb1.5O7(c-BZN) and the Corresponding Change in Dielectric Properties According to the Addition of Li2CO3 (Li2CO3 첨가에 따른 입방정 Bi1.5Zn1.0Nb1.5O7(c-BZN)의 상 변화 및 그에 따른 유전특성 변화 연구)

  • Yuseon Lee;Yunseok Kim;Seulwon Choi;Seongmin Han;Kyoungho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.79-85
    • /
    • 2023
  • A novel low-temperature co-fired ceramic (LTCC) dielectric, composed of (1-4x)Bi1.5Zn1.0Nb1.5O7-3xBi2Zn2/3Nb4/3O7-2xLiZnNbO4 (x=0.03-0.21), was synthesized through reactive liquid phase sintering of Bi1.5Zn1.0Nb1.5O7-xLi2CO3 ceramic at temperatures ranging from 850℃ to 920℃ for 4 hours. During sintering, Li2CO3 reacted with Bi1.5Zn1.0Nb1.5O7, resulting in the formation of Bi2Zn2/3Nb4/3O7, and LiZnNbO4. The resulting sintered body exhibited a relative sintering density exceeding 96% of the theoretical density. By altering the initial Li2CO3 content (x) and consequently modulating the volume fraction of Bi1.5Zn1.0Nb1.5O7, Bi2Zn2/3Nb4/3O7, and LiZnNbO4 in the final sintered body, a sample with high dielectric constant (εr), low dielectric loss (tan δ), and the temperature coefficient of dielectric constant (TCε) characterized by NP0 specification (TCε ≤ ±30 ppm/℃) was achieved. As the Li2CO3 content increased from x=0.03 mol to x=0.15 mol, the volume fraction of Bi2Zn2/3Nb4/3O7 and LiZnNbO4 in the composite increased, while the volume fraction of Bi1.5Zn1.0Nb1.5O7 decreased. Consequently, the dielectric constant (εr) of the composite materials varied from 148.38 to 126.99, the dielectric loss (tan δ) shifted from 5.29×10-4 to 3.31×10-4, and the temperature coefficient of dielectric constant (TCε) transitioned from -340.35 ppm/℃ to 299.67 ppm/℃. A dielectric exhibiting NP0 characteristics was achieved at x=0.09 for Li2CO3, with a dielectric constant (εr) of 143.06, a dielectric loss (tan δ) value of 4.31×10-4, and a temperature coefficient of dielectric constant (TCε) value of -9.98 ppm/℃. Chemical compatibility experiment with Ag electrode revealed that the developed composite material exhibited no reactivity with the Ag electrode during the co-firing process.

Growth and magnetic properties of Tb, Eu, EuTb-substituted garnet single crystal films (Tb, Eu, EuTb가 치환된 가네트 단결정 막의 성장과 자기적 특성)

  • Kim G. Y;Yoon S. G.;Chung I. S;Park S. B;Yoon D. H
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.5
    • /
    • pp.193-198
    • /
    • 2004
  • Using the $PbO-B_2O_3-Bi_2O_3$ flux system, $(TbBi)_3(FeAIGa)_5O_{12}(TbIG)$, $(EuBi)_3(FeAIGa)_5O_{12}(EuIG)$ and $(EuTbBi)_3(FeAIGa)_5O_{12}(EuTbIG)$ films were grown on $(GdCa)_3(GaMgZr)_5O_{12}(SGGG)$ substrates by the liquid phase epitaxy (LPE). The saturation magnetization of the grown TbIG, EuIG and EuTbIG films was about 150, 950 and 125 Oe, respectively. The TbIG films resulted in the single magnetic domain while the EuIG and EuTbIG films were observed to be the multi magnetic domains by magnetic force microscope (MFM).

Electrical Properties of ZnO-Bi2O3-Sb2O3 Ceramics (ZnO-Bi2O3-Sb2O3 세라믹스의 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jong-Hee;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.8
    • /
    • pp.738-748
    • /
    • 2008
  • In this study, it has been investigated on the changing behavior of electrical properties in $ZnO-Bi_2O_3-Sb_2O_3$ (Sb/Bi=2.0, 1.0 and 0.5) ceramics. The samples were prepared by conventional ceramic process, and then characterized by I-V, C-V curve plots, impedance and modulus spectroscopy (IS & MS) measurement. The electrical properties of ZBS systems were strongly dependent on Sb/Bi. In ZBS systems, the varistor characteristics were deteriorated noticeably with increasing Sb/Bi and the donor density and interface state density were increased with increasing Sb/Bi. On the other hand, we observed that the grain boundary reacted actively with the ambient oxygen according to Sb/Bi ratio. Especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one and electrically inactive intergranular one with temperature. Besides, the increased pyrochlore and $\beta$-spinel phase with Sb/Bi ratio caused the distributional inhomogeneity in the grain boundary barrier height and the temperature instability. To the contrary, the grain boundary layer was relatively homogeneous and more stable to temperature change and kept the system highly nonlinear at high Bi-rich phase contents.

Sintering and Electrical Properties of Cr-doped ZnO-Bi2O3-Sb2O3 (Cr을 첨가한 ZnO-Bi2O3-Sb2O3계의 소결과 전기적 특성)

  • Hong, Youn-Woo;Shin, Hyo-Soon;Yeo, Dong-Hun;Kim, Jin-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.12
    • /
    • pp.942-948
    • /
    • 2010
  • In this study we aims to examine the effects of 0.5 mol% $Cr_2O_3$ addition on the reaction, microstructure development, resultant electrical properties, and especially the bulk trap and interface state levels of ZnO-$Bi_2O_3-Sb_2O_3$ (Sb/Bi=0.5, 1.0, and 2.0) systems (ZBS). The samples were prepared by conventional ceramic process, and characterized by XRD, density, SEM, I-V, impedance and modulus spectroscopy (IS & MS) measurement. The sintering and electrical properties of Cr-doped ZBS (ZBSCr) systems were controlled by Sb/Bi ratio. Pyrochlore ($Zn_2Bi_3Sb_3O_{14}$) was decomposed more than $100^{\circ}C$ lowered on heating in ZBS (Sb/Bi=1.0) by Cr doping. The densification of ZBSCr (Sb/Bi=0.5) system was retarded to $800^{\circ}C$ by unknown Bi-rich phase produced at $700^{\circ}C$. Pyrochlore on cooling was reproduced in all systems. And $Zn_7Sb_2O_{12}$ spinel ($\alpha$-polymorph) and $\delta-Bi_2O_3$ phase were formed by Cr doping. In ZBSCr, the varistor characteristics were not improved drastically (non-linear coefficient $\alpha$ = 7~12) and independent on microstructure according to Sb/Bi ratio. Doping of $Cr_2O_3$ to ZBS seemed to form $Zn_i^{..}$(0.16 eV) and $V^{\bullet}_o$ (0.33 eV) as dominant defects. From IS & MS, especially the grain boundaries of Sb/Bi=0.5 systems were divided into two types, i.e. sensitive to oxygen and thus electrically active one (1.1 eV) and electrically inactive intergranular one (0.95 eV) with temperature.