• Title/Summary/Keyword: $Bi_2Se_3$

Search Result 143, Processing Time 0.032 seconds

The Selective Removal of Sb and Pb from Molten Bi-Pb-Sb Alloy by Oxidation (용융(熔融) Bi-Pb-Sb계(系) 합급(合金)의 산화(酸化)에 의한 Sb과 Pb 제거(除去))

  • Kim, Se-Jong;Son, In-Joon;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.21 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • In this study, behaviors of removing Sb and Pb by oxidation of molten Bi-Pb-Sb alloy which is a by-product of non-ferrous smelting process was investigated. The molten alloy was oxidized at 1173 K by bubbling $N_2+O_2$ gas through a submerged nozzle. The Sb was removed and recovered as mixed phase of $Sb_2O_3$ and metal Sb. In the case of bubbling $N_2+O_2$ gas into molten Bi-Pb alloy at 923 K, Pb was oxidized and removed to slag. But Bi could not be refined due to simultaneous oxidization of Bi with Pb.

Thermoelectric Properties of N-type 90% $Bi_2Te_3+10%Bi_2Se_3$ Thermoelectric Materials Produced by Melt Spinning Method and Sintering

  • Kim, Taek-Soo;Chun, Byong-Sun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.459-460
    • /
    • 2006
  • N-type $Bi_2Te_3-Sb_2Te_3$ solid solutions doped with 1$CdCl_2$ was prepared by melt spinning, crushing and vacuum sintering processes. Microstructure, bending strength and thermoelectric property were investigated as a function of the doping quantity from 0.03wt.% to 0.10wt.% and sintering temperature from $400^{\circ}C$ to $500^{\circ}C$, and finally compared with those of conventionally fabricated alloys. The alloy showed a good structural homogeneity as well as bending strength of $3.88Kgf/mm^2$. The highest thermoelectric figure of merit was obtained by doping 0.03wt.% and sintering at $500^{\circ}C$.

  • PDF

Effects of Various Fabrication Routes on Thermoelectric Properties of n-type Bi2Te2.85Se0.15 Alloys (제조공정에 따른 n형 Bi2Te2.85Se0.15합금의 열전성능 평가)

  • Nagarjuna, C.;Shin, D.W.;Lee, M.W.;Lee, S.H.;Hong, S.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.3
    • /
    • pp.135-142
    • /
    • 2018
  • In this study, we have fabricated n-type $Bi_2Te_{2.85}Se_{0.15}$ compounds by different processing routes such as crushing, milling and mixing respectively. Subsequently, the obtained powders were consolidated by spark plasma sintering (SPS). The phase crystallinity of bulk samples were identified using X-ray diffraction technique. Powder morphology and fracture surface of bulk samples were observed using the scanning electron microscopy (SEM). The Seebeck coefficient and electrical conductivity values were significantly increased for the milling sample than crushing and mixing samples. As a result, the maximum power factor was obtained $2.4mW/mK^2$, which is thrice than that of crushing process. The maximum figure of merit (ZT) of 0.77 was achieved at 400 K for the milling sample. Furthermore, relatively high hardness and density values were noticed for the different processed samples.

Thickness and Annealing Effects on the Thermoelectric Properties of N-type $Bi_2Te_{2.4}Se_{0.6}$ Thin Films (N형 $Bi_2Te_{2.4}Se_{0.6}$ 박막의 열전 특성에 미치는 두께 및 열처리 효과)

  • Kim Il-Ho;Jang Kyung-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.153-158
    • /
    • 2005
  • The effective mean free path model was adopted to examine the thickness effect on the thermoelectric properties of flash-evaporated n-type $Bi_2Te_{2.4}Se_{0.6}$ thin films. Annealing effects on the electron concentration and mobility were also studied, and their variations were analyzed in conjunction with antisite defects. Seebeck coefficient and electrical resistivity versus inverse thickness showed a linear relationship, and the mean free path was found to be $5120\AA$ Electron mobility was increased by annealing treatment and electron concentration was decreased considerably due to reduction of antisite defects, so that electrical conductivity was decreased and Seebeck coefficient was increased. When annealed at 473k for 1 hour, Seebeck coefficient and electrical conductivity were $-200\;\mu V/k\;and\;510\omega^{-1}cm^{-1}$, respectively. Therefore, the thermoelectric power factor was improved to be $20\times10^{-4}\;W/(mK^2)$.

Thermoelectric properties of multi-layered Bi-Te/In-Se/Bi-Te thin film deposited by RF magnetron sputter

  • Kim, Hyo-Jung;Kim, Kwang-Chon;Choi, Won-Chel;Jung, Kyoo-Ho;Kim, Hyun-Jae;Park, Chan;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.231-231
    • /
    • 2010
  • Thermoelectric properties of a multi-layered thin film, which was composed with indium selenide and bismuth telluride, were investigated. The structure of the layered thin film is Bi-Te /In-Se/Bi-Te and it was prepared on sapphire substrate by RF magnetron sputter using stoichiometric $Bi_2Te_3$ (99.9%) and $In_2Se_3$(99.99%) target at room temperature. Then, it was annealed at temperature range of 150 - $500^{\circ}C$ in Ar ambient. Structural characterizations were done using X-ray diffraction(XRD, BRUKER, D8, 60kW) and transmission electron microscopy (TEM, FEI, Tecnai, F30 S-Twin), respectively. Cross-section of multi-layer structure was observed by Scanning electron microscopy (SEM). The resistivity and Seebeck coefficient of these samples were also measured by conventional equipment at room temperature. The maximum value of power factor was $1.16\;{\mu}W/k^2m$ at annealing temperature of $400^{\circ}C$.

  • PDF

Effects of Hydrogen Reduction in Microstructure, Mechanical and Thermoelectric Properties of Gas Atomized n-type Bi2Te2.7 Se0.3 Material

  • Rimal, Pradip;Yoon, Sang-Min;Kim, Eun-Bin;Lee, Chul-Hee;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.23 no.2
    • /
    • pp.126-131
    • /
    • 2016
  • The recent rise in applications of thermoelectric materials has attracted interest in studies toward the fabrication of thermoelectric materials using mass production techniques. In this study, we successfully fabricate n-type $Bi_2Te_{2.7}Se_{0.3}$ material by a combination of mass production powder metallurgy techniques, gas atomization, and spark plasma sintering. In addition, to examine the effects of hydrogen reduction in the microstructure, the thermoelectric and mechanical properties are measured and analyzed. Here, almost 60% of the oxygen content of the powder are eliminated after hydrogen reduction for 4 h at $360^{\circ}C$. Micrographs of the powder show that the reduced powder had a comparatively clean surface and larger grain sizes than unreduced powder. The density of the consolidated bulk using as-atomized powder and reduced atomized powder exceeds 99%. The thermoelectric power factor of the sample prepared by reduction of powder is 20% better than that of the sample prepared using unreduced powder.

Structural Characterization of Bismuth Zinc Oxide Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy (플라즈마분자선에피탁시법으로 성장한 산화비스무스아연 박막의 구조특성)

  • Lim, Dong-Seok;Shin, Eun-Jung;Lim, Se-Hwan;Han, Seok-Kyu;Lee, Hyo-Sung;Hong, Soon-Ku;Joeng, Myoung-Ho;Lee, Jeong-Yong;Cho, Hyung-Koun;Yao, Takafumi
    • Korean Journal of Materials Research
    • /
    • v.21 no.10
    • /
    • pp.563-567
    • /
    • 2011
  • We report the structural characterization of $Bi_xZn_{1-x}O$ thin films grown on c-plane sapphire substrates by plasma-assisted molecular beam epitaxy. By increasing the Bi flux during the growth process, $Bi_xZn_{1-x}O$ thin films with various Bi contents (x = 0~13.17 atomic %) were prepared. X-ray diffraction (XRD) measurements revealed the formation of Bi-oxide phase in (Bi)ZnO after increasing the Bi content. However, it was impossible to determine whether the formed Bi-oxide phase was the monoclinic structure ${\alpha}-Bi_2O_3$ or the tetragonal structure ${\beta}-Bi_2O_3$ by means of XRD ${\theta}-2{\theta}$ measurements, as the observed diffraction peaks of the $2{\theta}$ value at ~28 were very close to reflection of the (012) plane for the monoclinic structure ${\alpha}-Bi_2O_3$ at 28.064 and the reflection of the (201) plane for the tetragonal structure ${\beta}-Bi_2O_3$ at 27.946. By means of transmission electron microscopy (TEM) using a diffraction pattern analysis and a high-resolution lattice image, it was finally determined as the monoclinic structure ${\alpha}-Bi_2O_3$ phase. To investigate the distribution of the Bi and Bi-oxide phases in BiZnO films, elemental mapping using energy dispersive spectroscopy equipped with TEM was performed. Considering both the XRD and the elemental mapping results, it was concluded that hexagonal-structure wurtzite $Bi_xZn_{1-x}O$ thin films were grown at a low Bi content (x = ~2.37 atomic %) without the formation of ${\alpha}-Bi_2O_3$. However, the increased Bi content (x = 4.63~13.17 atomic %) resulted in the formation of the ${\alpha}-Bi_2O_3$ phase in the wurtzite (Bi)ZnO matrix.

Thermoelectric Power Generation by Bi Alloy Semiconductors (Bi계화합물 반도체에 의한 열전발전)

  • 박창엽
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.5 no.3
    • /
    • pp.1-8
    • /
    • 1968
  • This thermcelectrie generator devices have been determined for bismuth alloys, Sb2T and AnSb containing small amounts of doping materials. The thermoeleotric matermoelectric power;$\alpha$; resistivity; $\rho$, heatconduction; k, and temperature difference between cold and hot junction was measured. Generator consisting both B T + B S and B T+S T is better efficient than others containing another thermoceuple matarials. Its efficiency is 1.42%.

  • PDF

Distribution Behavior of Bi and Pb Between Molten PbO-SiO2 Slag and Bi (용융(熔融) PbO-SiO2계(系) 슬래그와 Bi 사이의 Bi와 Pb의 분배거동(分配擧動))

  • Kim, Se-Jong;Kim, Eung-Jin;Sohn, Ho-Sang
    • Resources Recycling
    • /
    • v.21 no.5
    • /
    • pp.65-71
    • /
    • 2012
  • The equilibrium distribution of bismuth and lead between molten PbO-$SiO_2$ slag and bismuth phase was studied in the temperature range of $775^{\circ}C$ to $850^{\circ}C$ in a MgO crucible. The oxygen partial pressure of atmosphere was controlled by $P_{CO2}/P_{CO}$ ratio. The value of $(%PbO)_{slag}/[%Pb]_{metal}$ increased with increasing $SiO_2$ content of slag, and the value of $(%Bi_2O_3)_{slag}/[%Bi]_{metal}$ decreased with increasing $SiO_2$ content of slag. The concentration of Pb in metal increased with increasing temperature. These experimental results agreed well with the thermodynamic prediction.

A Study on Bismuth tri-iodide for X-ray direct and digital imagers (직접방식 엑스선 검출기를 위한 $BiI_3$ 특성 연구)

  • Lee, S.H.;Kim, Y.S.;Kim, Y.B.;Jung, S.H.;Park, J.K.;Jung, W.B.;Jang, M.Y.;Mun, C.W.;Nam, S.H.
    • Journal of the Korean Society of Radiology
    • /
    • v.3 no.2
    • /
    • pp.27-31
    • /
    • 2009
  • Now a days, the Medical X-ray equipments has become digitalized from analog type such as film, cassette to CR, DR. And many scientists are still researching and developing the Medical X-ray equipment. In this study, we used the Bismuth tri-iodide to conversion material for digital X-ray equipments and we couldn't get the satisfying result than previous study, but it opened new possibility to cover the disadvantage of a-Se is high voltage aplly and difficultness of make. In this paper, we use $BiI_3$ powder(99.99%) as x-ray conversion material and make films that have thickness of 200um and the film size is $3cm{\times}3cm$. Also, we deposited an ITO(Indium Tin Oxide) electrode as top electrode and bottom electrode using a Magnetron Sputtering System. To evaluate a characteristics of the produced films, an electrical and structural properties are performed. Through a SEM analysis, we confirmed a surface and component part. And to analyze the electrical properties, darkcurrent, sensitivity and SNR(Signal to Noise Ratio) are measured. Darkcurrent is $1.6nA/cm^2$ and sensitivity is $0.629nC/cm^2$ and this study shows that the electrical properties of x-ray conversion material that made by screen printing method are similar to PVD method or better than that. This results suggest that $BiI_3$ is suitable for a replacement of a-Se because of the reduced manufacture processing and improved yield.

  • PDF