• Title/Summary/Keyword: $Bi_2Se_3$

Search Result 144, Processing Time 0.028 seconds

Thermoelectric Properties of the n-type $Bi_2(Te,Se)_3$ Processed by Hot Pressing (n형 $Bi_2(Te,Se)_3$ 가압소결체의 열전특성)

  • Park, D.H.;Roh, M.R.;Kim, M.Y.;Oh, T.S.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.2
    • /
    • pp.49-54
    • /
    • 2010
  • The n-type $Bi_2(Te,Se)_3$ powders were fabricated by melting/grinding method and were hot-pressed in order to compare thermoelectric properties of the hot-pressed specimens with those of the $Bi_2(Te,Se)_3$ ingot. Effects of mechanical milling treatment of the $Bi_2(Te,Se)_3$ powders on thermoelectric characteristics of a hot-pressed specimen were also examined. The hot-pressed $Bi_2(Te,Se)_3$ exhibited power factors of $27.3{\sim}32.3{\times}10^{-4}W/m-K^2$ which were superior to $24.2{\times}10^{-4}W/m-K^2$ of the ingot. The $Bi_2(Te,Se)_3$, hot-pressed after mechanical milling treatment of the powders, possessed a non-dimensional figure-of-merit of 1.02 at $100^{\circ}C$ and exhibited extrinsic-intrinsic transition at $130^{\circ}C$.

Study on Thermoelectric Properties of Cu Doping of Pulse-Electrodeposited n-type Bi2(Te-Se)3 Thin Films (펄스 전기도금법에 의해 제조된 n형 Bi2(Te-Se)3 박막의 Cu 도핑에 따른 열전특성에 관한 연구)

  • Heo, Na-Ri;Kim, Kwang-Ho;Lim, Jae-Hong
    • Journal of Surface Science and Engineering
    • /
    • v.49 no.1
    • /
    • pp.40-45
    • /
    • 2016
  • Recently, $Bi_2Te_3$-based alloys are the best thermoelectric materials near to room temperature, so it has been researched to achieve increased figure of merit(ZT). Ternary compounds such as Bi-Te-Se and Bi-Sb-Te have higher thermoelectric property than binary compound Bi-Te and Sb-Te, respectively. Compared to DC plating method, pulsed electrodeposition is able to control parameters including average current density, and on/off pulse time etc. Thereby the morphology and properties of the films can be improved. In this study, we electrodeposited n-type ternary Cu-doped $Bi_2(Te-Se)_3$ thin film by modified pulse technique at room temperature. To further enhance thermoelectric properties of $Bi_2(Te-Se)_3$ thin film, we optimized Cu doping concentration in $Bi_2(Te-Se)_3$ thin film and correlated it to electrical and thermoelectric properties. Thus, the crystal, electrical, and thermoelectric properties of electrodeposited $Bi_2(Te-Se)_3$ thin film were characterized the XRD, SEM, EDS, Seebeck measurement, and Hall effect measurement, respectively. As a result, the thermoelectric properties of Cu-doped $Bi_2(Te-Se)_3$ thin films were observed that the Seebeck coefficient is $-101.2{\mu}V/K$ and the power factor is $1412.6{\mu}W/mK^2$ at 10 mg of Cu weight. The power factor of Cu-doped $Bi_2(Te-Se)_3$ thin film is 1.4 times higher than undoped $Bi_2(Te-Se)_3$ thin film.

Band-Gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3-10% Bi_2Se_3$ Single Crystals (90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정의 밴드갭 에너지와 열전특성)

  • Ha, Heon-Pil;Hyeon, Do-Bin;Hwang, Jong-Seung;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.9 no.4
    • /
    • pp.349-354
    • /
    • 1999
  • The temperature dependences of the Hall coefficient, carrier mobility, electrical resistivity, Seebeck coefficient, thermal conductivity, and figure-of-merit of the undoped and $CdI_2$-doped 90% $Bi_2Te_3-10% Bi_2Se_3$, single crystals, grown by the Bridgman method, have been characterized at temperatures ranging from 77K to 600K. The saturated carrier concentration and degenerate temperature of the undoped 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal are $5.85\times10_{18}cm^{-3}$ and 127K, respectively. The scattering parameter of the 90% $Bi_2Te_3-10% Bi_2Se_3$ single crystal is determined to b -0.23, and the electron mobility to hole mobility ratio ($\mu_e/\mu_h)$ is 1.45. The bandgap energy at 0K of the 90% <$Bi_2Te_3-10% Bi_2Se_3$ single crystal is 0.200 eV. Adding $CdI_2$as a donor dopant, a maximum figure-of-merit of $3.2\times10^{-3}/K$$CdI_2$-doped specimen.

  • PDF

Single Crystal Growth and Magnetic Properties of Mn-doped Bi2Se3 and Sb2Se3

  • Choi, Jeong-Yong;Lee, Hee-Woong;Kim, Bong-Seo;Choi, Sung-Youl;Choi, Ji-Youn;Cho, Sung-Lae
    • Journal of Magnetics
    • /
    • v.9 no.4
    • /
    • pp.125-127
    • /
    • 2004
  • We have grown Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ single crystals using the temperature gradient solidification method. We report on the structural and magnetic propertis of Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ compound semi-conductors. The lattice constants of several percent Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ were slightly smaller than those of the un-doped samples due to the smaller Mn atomic radius ($1.40 {\AA}$) than those of Bi ($1.60 {\AA}$) and Sb ($1.45 {\AA}$). Mn-doped $Bi_2Se_3$ and $Sb_2Se_3$ showed spin glass and paramagnetic properties, respectively.

Thermoelectric properties of Bi2Te2.7Se0.3 grown by traveling heater method (Traveling heater method에 의해 성장된 Bi2Te2.7Se0.3의 열전특성)

  • Roh, Im-Jun;Hyun, Dow-Bin;Kim, Jin-Sang
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.4
    • /
    • pp.135-139
    • /
    • 2015
  • $Bi_2Te_3-Bi_2Se_3$ alloy which is typical n-type thermoelectric material were grown by traveling heater method (THM) technique. We investigate the effect of the composition of $100-x(Bi_2Te_3)-x(Bi_2Se_3)$ and doping of n-type dopants such as $SbI_3$ and $CdCl_2$. Maximum figure of merit of $Bi_2Te_3-Bi_2Se_3$ alloy was observed with $CdCl_2$ 0.1 wt% (Z: $2.73{\times}10^{-3}/K$) and $SbI_3$ 0.05 wt% (Z: $2.29{\times}10^{-3}/K$). Deviation along the length of $Bi_2Te_3-Bi_2Se_3$ ingot grown by THM method is low, which indicates that the ingot is very homogenized. Also we observed the close relationship of between anisotropy ratio and dopant in the $90(Bi_2Te_3)-10(Bi_2Se_3)$ alloys. And we confirmed the fact that anisotropy ratio exerts thermoelectric performance in $Bi_2Te_3$ based n-type thermoelectric material.

Thermoelectric Properties of the Hot-Pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ Alloys with the $Bi_{2}Se_{3}$ Content ($Bi_{2}Se_{3}$ 함량에 따른 Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$)

  • Kim, Hee-Jeong;Oh, Tae-Sung;Hyun, Do-Bin
    • Korean Journal of Materials Research
    • /
    • v.8 no.5
    • /
    • pp.408-412
    • /
    • 1998
  • Thermoelectric properties of Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$(0.05$\leq$x$\leq$0.25) prepared by mechanical alloying and hot pressing, were investigated. Contrary to the p-type behavior of single crystals, the hot-pressed Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$ exhibited ntype conduction without addition of donor dopant. When $Bi_2(Te_{0.85}Se_{0.15})_3$powders were annealed in (50% $H_2$ + 50% Ar) atmosphere, the hot-pressed specimen exhibited a positive Seebeck coefficient due to the reduction of the electron concentration by removal of the oxide layer on the powder surface and annealing-out of the excess Te vacancies. Among the Bi$_{2}$(Te$_{1-x}$Se$_{ x}$)$_{3}$fabricated by mechanical alloying and hot pressing, $Bi_2(Te_{0.85}Se_{0.15})_3$ exhibited a maximum figure-of-merit of 1.92 $\times$ $lO^{-3}$/K.

  • PDF

MBE growth of topological insulator $Bi_2Se_3$ films on Si(111) substrate

  • Kim, Yong-Seung;Bansa, Namrata;Edrey, Eliav;Brahlek, Mathew;Horibe, Yoichi;Iida, Keiko;Tanimura, Makoto;Li, Guo-Hong;Feng, Tian;Lee, Hang-Dong;Gustafsson, Torgny;Andrei, Eva;Cheong, Sang-Wook;Oh, Seong-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.59-59
    • /
    • 2011
  • We will report atomically sharp epitaxial growth of $Bi_2Se_3$ three-dimensional topological insulator films on Si(111) substrate with molecular beam epitaxy (MBE). It was achieved by employing two step growth temperatures to prevent any formation of second phase, like as $SiSe_2$ clusters, between $Bi_2Se_3$ and Si substrate at the early stage of growth. The growth rate was determined completely by Bi flux and the Bi:Se flux ratio was kept ~1:15. The second-phase-free atomically sharp interface was verified by RHEED, TEM and XRD. Based on the RHEED analysis, the lattice constant of $Bi_2Se_3$ relaxed to its bulk value during the first quintuple layer implying the absence of strain from the substrate. Single-crystalline XRD peaks of $Bi_2Se_3$ were observed in films as thin as 4 QL. TEM shows full epitaxial structure of $Bi_2Se_3$ film down to the first quintuple layer without any second phases. This growth method was used to grow high quality epitaxial $Bi_2Se_3$ films from 3 QL to 3600 QL. The magneto-transport properties of these thin films show a robust 2D surface state which is thickness independent.

  • PDF

Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering (Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성)

  • 김익수
    • Journal of Powder Materials
    • /
    • v.5 no.1
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

Microstructure and Thermoelectric Properties of n-Type $\textrm{Bi}_{2}(\textrm{Te}_{0.9}\textrm{Se}_{0.1})_3$ Fabricated by Mechanical Alloying and Hot Pressing Methods (기계적 합금화 공정으로 제조한 n형 $\textrm{Bi}_{2}(\textrm{Te}_{0.9}\textrm{Se}_{0.1})_3$ 가압소결체의 미세구조와 열전특성)

  • Kim, Hui-Jeong;Choe, Jae-Sik;Hyeon, Do-Bin;O, Tae-Seong
    • Korean Journal of Materials Research
    • /
    • v.7 no.1
    • /
    • pp.40-49
    • /
    • 1997
  • $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ thermoelectric matcrials havc 11et:n fahricxted hy mechanical alloying and hot pressing methods. Microstructure and thermoelectric properties of the hot 11resseii $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ have been investigated Lvith variations of hot pressing temperature and dopmt atltiition Formation of $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ alloy powders was completed by mechanical alloying of the as-mixed Ri. Te, arid Sc grmules of ~3.6mm size for 3 hours at ball-to-material weight ratio of 5 : 1. Figure of merit of $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ was markedly incrcwieti hy hot pressing at temperatures above $450^{\circ}C$, and value of $1.9{\times}10^{-3}/K$ was obtained for the specimen hot pressed at $550^{\circ}C$. With addition of 0.015 wt% Ri as acceptor dopant, figure of merit ol $Bi_{2}(Te_{0.9}Se_{0.1})_{3}$ hot pressed $550^{\circ}C$$2.1{\times}10^{-3}/K$.

  • PDF