• 제목/요약/키워드: $BaTiO_3-Poly$ vinylidene fluoride

검색결과 4건 처리시간 0.017초

BaTiO3-Poly Vinylidene Fluoride 복합 압전발전기의 출력특성에 미치는 배합비와 분극의 효과 (Effects of Mixing Ratio and Poling on Output Characteristics of BaTiO3-Poly Vinylidene Fluoride Composite Piezoelectric Generators)

  • 김희태;박상식
    • 한국재료학회지
    • /
    • 제33권12호
    • /
    • pp.517-524
    • /
    • 2023
  • BaTiO3-Poly vinylidene fluoride (PVDF) solution was prepared by adding 0~25 wt% BaTiO3 nanopowder and 10 wt% PVDF powder in solvent. BaTiO3-PVDF film was fabricated by spreading the solution on a glass with a doctor blade. The output performance increased with increasing BaTiO3 concentration. When the BaTiO3 concentration was 20 wt%, the output voltage and current were 4.98 V and 1.03 ㎂ at an applied force of 100 N. However, they decreased when the over 20 wt% BaTiO3 powder was added, due to the aggregation of particles. To enhance the output performance, the generator was poled with an electric field of 150~250 kV/cm at 100 ℃ for 12 h. The output performance increased with increasing electric field. The output voltage and current were 7.87 V and 2.5 ㎂ when poled with a 200 kV/cm electric field. This result seems likely to be caused by the c-axis alignment of the BaTiO3 after poling treatment. XRD patterns of the poled BaTiO3-PVDF films showed that the intensity of the (002) peak increased under high electric field. However, when the generator was poled with 250 kV/cm, the output performance of the generator degraded due to breakdown of the BaTiO3-PVDF film. When the generator was matched with 800 Ω resistance, the power density of the generator reached 1.74 mW/m2. The generator was able to charge a 10 ㎌ capacitor up to 1.11 V and turn on 10 red LEDs.

Preparation of BaTiO3/Poly(vinylidene fluoride) 0-3 Composite Films for Dielectric Applications

  • Hwang, Kyu-Seog;Kang, Jong-Min;Lee, June-Ho;Hwangbo, Seung
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권4호
    • /
    • pp.1692-1696
    • /
    • 2018
  • Ferroelectric $BaTiO_3$/poly(vinylidene fluoride) (PVDF) nanocomposite films were successfully prepared by mixing $BaTiO_3$ nano-particles into PVDF solution dissolved in dimethylformamide under ultrasonification. The mixture was casted onto glass petri dish and then annealed at $100^{\circ}C$ for 12 h in vacuum dry oven. Crystal structure and surface morphology of the samples were analyzed by using an X-ray diffraction analysis and a field emission-scanning electron microscope, respectively. The relative dielectric permittivity and loss tangent were determined in the frequency range of 50 Hz to 1 MHz. For the $BaTiO_3/PVDF$ nanocomposites, the entire diffraction peaks match those indicated by standard $BaTiO_3$ perovskite structure. The FE-SEM image reveals the homogeneity of the $BaTiO_3$ nanopowder distribution and also predominant 0-3 connectivity. All results show that the dielectric properties of the nanocomposite films are desirable and the fabrication technique for preparing the $BaTiO_3/PVDF$ nanocomposites has a potential in the electronic applications.

압전 및 비압전 폴리머와 BaTiO3 나노입자로 제조된 유-무기 압전 나노복합체의 발전성능 비교연구 (A Comparison Study of Output Performance of Organic-Inorganic Piezoelectric Nanocomposite Made of Piezoelectric/Non-piezoelectric Polymers and BaTiO3 Nanoparticles)

  • 현동열;박귀일
    • 한국분말재료학회지
    • /
    • 제26권2호
    • /
    • pp.119-125
    • /
    • 2019
  • Piezoelectric energy harvesting technology is attracting attention, as it can be used to convert more accessible mechanical energy resources to periodic electricity. Recent developments in the field of piezoelectric energy harvesters (PEHs) are associated with nanocomposites made from inorganic piezoelectric nanomaterials and organic elastomers. Here, we used the $BaTiO_3$ nanoparticles and piezoelectric poly(vinylidene fluoride) (PVDF) polymeric matrix to fabricate the nanocomposites-based PEH to improve the output performance of PEHs. The piezoelectric nanocomposite is produced by dispersing the inorganic piezo-ceramic nanoparticles inside an organic piezo-polymer and subsequently spin-coat it onto a metal plate. The fabricated organic-inorganic piezoelectric nanocomposite-based PEH harvested the output voltage of ~1.5 V and current signals of ~90 nA under repeated mechanical pushings: these values are compared to those of energy devices made from non-piezoelectric polydimethylsiloxane (PDMS) elastomers and supported by a multiphysics simulation software.

비납계 BCTZ 압전세라믹과 압전폴리머로 제작된 하이브리드 나노복합체 기반의 플렉서블 에너지 하베스팅 소자 (Flexible Energy Harvesting Device based on Hybrid Piezoelectric Nanocomposite made of Lead-Free BCTZ Ceramic and Piezo-polymer)

  • 박성철;이재훈;김연규;박귀일
    • 한국전기전자재료학회논문지
    • /
    • 제35권1호
    • /
    • pp.72-79
    • /
    • 2022
  • Piezoelectric energy harvesting technologies, which can be used to convert the electricity from the mechanical energy, have been developed in order to assist or power the wearable electronics. To realize non-toxic and biocompatible electronics, the lead-free (Ba0.85Ca0.15)(Ti0.90Zr0.10)O3 (BCTZ) nanoparticles (NPs) are being studied with a great attention as flexible energy harvesting device. Herein, piezoelectric hybrid nanocomposites were fabricated using BCTZ NPs-embedded poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] matrix to improve the performance of flexible energy harvester. Output performance of the fabricated energy device was investigated by the well-optimized measurement system during the periodically bending and releasing motions. The generated open-circuit voltage and the short-circuit current of the piezoelectric hybrid nanocomposite-based energy harvester reached up to ~15 V and ~1.1 ㎂, respectively; moreover, the instantaneous power of 3.5 ㎼ is determined from load voltage and current at the external load of 20 MΩ. This research is expected to cultivate a new approach to high-performance wearable self-powering electronics.