• Title/Summary/Keyword: $BCl_3/N_2$

Search Result 205, Processing Time 0.027 seconds

Production and development of porcine tetraploid parthenogenetic embryos

  • Lin, Tao;Lee, Jae Eun;Shin, Hyeon Yeong;Lee, Joo Bin;Kim, So Yeon;Jin, Dong Il
    • Journal of Animal Science and Technology
    • /
    • v.61 no.4
    • /
    • pp.225-233
    • /
    • 2019
  • The aim of this study was to produce porcine tetraploid (4N) parthenogenetic embryos using various methods and evaluate their developmental potential. In method 1 (M1), porcine 4N parthenogenetic embryos were obtained by inhibiting extrusion of both first (PB1) and second (PB2) polar bodies; in methods 2 (M2) and 3 (M3), 4N parthenogenetic embryos were obtained by electrofusion of 2-cell stage diploid parthenogenetic embryos derived from inhibition of PB2 or PB1 extrusion, respectively. We found no differences in the rates of cleavage or blastocyst formation or the proportion of 4N embryos among M1, M2, and M3 groups. The different methods also did not influence apoptosis rates (number of TUNEL-positive cells/number of total cells) or expression levels of apoptosis-related BAX and BCL2L1 genes. However, total cell and EdU (5-ethynyl-2'-deoxyuridine)-positive cell numbers in 4N parthenogenetic blastocysts derived from M1 were higher (p < 0.05) than those for M2 and M3 groups. Our results suggest that, although porcine 4N parthenogenetic embryos could be produced by a variety of methods, inhibition of PB1 and PB2 extrusion (M1) is superior to electrofusion of 2-cell stage diploid parthenogenetic embryos derived from inhibition of PB2 (M2) or PB1 (M3) extrusion.

GaN Etch Process System using Parallel Plasma Source for Micro LED Chip Fabrication (병렬 플라즈마 소스를 이용한 마이크로 LED 소자 제작용 GaN 식각 공정 시스템 개발)

  • Son, Boseong;Kong, Dae-Young;Lee, Young-Woong;Kim, Huijin;Park, Si-Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.3
    • /
    • pp.32-38
    • /
    • 2021
  • We developed an inductively coupled plasma (ICP) etcher for GaN etching using a parallel plasma electrode source with a multifunctional chuck matched to it in order for the low power consumption and low process cost in comparison with the conventional ICP system with a helical-type plasma electrode source. The optimization process condition using it for the micro light-emitting diode (µ-LED) chip fabrication was established, which is an ICP RF power of 300 W, a chuck power of 200 W, a BCl3/Cl2 gas ratio of 3:2. Under this condition, the mesa structure with the etch depth over 1 ㎛ and the etch angle over 75° and also with no etching residue was obtained for the µ-LED chip. The developed ICP showed the improved values on the process pressure, the etch selectivity, the etch depth uniformity, the etch angle profile and the substrate temperature uniformity in comparison with the commercial ICP. The µ-LED chip fabricated using the developed ICP showed the similar or improved characteristics in the L-I-V measurements compared with the one fabricated using the conventional ICP method

Induction of Apoptosis by Treatment of Human Prostate Cancer LNCaP Cells with Methanol Fractions from Prunus mume (매실(Prunus mume) 메탄올 분획물의 처리에 따른 인체 전립선암세포 LNCaP의 apoptosis 유도 효과)

  • Kim, Hwi-gon;Kim, Jeong-Ho;Heo, Ji-An;Won, Yeong-Seon;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.31 no.3
    • /
    • pp.321-329
    • /
    • 2021
  • This study examined the growth inhibitory effect of the methanol fraction of maesil (Prunus mume) extract (MMF) on LNCaP, PC-3, and RC-58T human prostate cancer cell lines. Among these cell lines, LNCaP was the most sensitive to the inhibitory effects of MMF. Observation of the morphology and apoptotic body formation in the LNCaP cells revealed morphological changes, nuclear damage, and condensation in response to MMF treatment. The suppressive effect of MMF was related to the intrinsic apoptosis pathway, as indicated by increased expression of the pro-apoptotic proteins Bax, capase-3, capase-9, and PARP and decreased expression of the anti-apoptotic protein Bcl-2. Combined treatment with MMF and the AIF inhibitor N-phenylmalemide (N-PM) indicated that MMF treatment alone had a significant growth suppression effect. The involvement of the extrinsic apoptosis pathway was also confirmed by increased expression of AIF and Endo G. The growth suppression effect of MMF was also significant when compared to the effects of a combination of the PI3K inhibitor LY294002 and MMF. The reduced expression of PI3K, p-Akt, and p-mTOR confirmed the involvement of the PI3K/Akt/ mTOR signaling pathway in regulating the anti-proliferative properties of MMF. In conclusion, the growth suppression effect of MMF in the LNCaP human prostate cancer cell line shows the possibility of using this natural product in functional foods.

Preventive Effect of Actinidia Valvata Dunn Extract on N-methyl-N'-nitro-N-nitrosoguanidine-induced Gastrointestinal Cancer in Rats

  • Wang, Xia;Liu, Hao;Wang, Xin;Zeng, Zhi;Xie, Li-Qun;Sun, Zhi-Guang;Wei, Mu-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6363-6367
    • /
    • 2014
  • Purpose: This study was conducted to assess the preventive effect of Actinidia valvata Dunn (AVD) extract on an animal model of gastrointestinal carcinogenesis on the basis of changes in tumor incidence, cell proliferation, and apoptosis. Materials and Methods: Seventy-five male Wistar rats were divided into five different treatment groups with 15 rats in each group. Group I was given normal feed, whereas Groups II to IV were treated with 10% sodium chloride in the first six weeks and 100ug/mL of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in drinking water for 24 weeks. Group II was then given normal feed, whereas Group III was given AVD extract (0.24g/kg/day) for 12 weeks. Group IV was given AVD extract from the first week to the 36th week, whereas Group V was treated with AVD extract alone for 36 weeks. All rats were sacrificed at the end of the 36-week experiment and assessed for the presence of gastrointestinal tumors. The occurrence of cancer was evaluated by histology. Bax, Bcl-2, Caspase-3, and cyclinD1 were determined by immunohistochemical staining and Western blotting. Results: The incidences of gastric cancer were 0% in Group I, 73.3% in Group II, 33.3% in Group III, 26.7% in Group IV, and 0% in Group V. Bcl-2 and cyclinD1 expression was decreased in AVD extract treated groups, whereas Bax and Caspase-3 expression was increased. Comparison with group II revealed significant differences (p<0.01). Conclusions: AVD extract exhibits an obvious preventive effect on gastrointestinal carcinogenesis induced by MNNG in rats through the regulation of cell proliferation and apoptosis.

Protective Effect of Puerariae radix Against Ethanol-induced Apoptosis on Human Neuroblastoma Cell Line SK-N-MC

  • Koo Gyo Sung;Cho Son Hae;Jang Mi Hyean;Kim Chang Ju;Kim Ee Hwa;Lee Choong Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.602-608
    • /
    • 2002
  • To investigate whether Puerariae radix (PR) possesses protective effect against ethanol (EtOH)-inducecl apoptosis in the central nervous system, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometric analysis, DNA fragmentation assay. and reverse transcription-polymerase chain reaction (RT-PCR) were performed on human neuroblastoma cell line SK-N-MC. Morphological and biochemical analyses demonstrated that SK-N-MC cells treated with EtOH exhibit classical apoptotic features. On the other hand, cells pre-treated with PR prior to EtOH exposure showed decreased occurrence of classical apoptotic features. In addition, it was shown that PR pre-treatment inhibits EtOH-induced increases in the levels of mRNA expression of bax and caspase-3, while it further enhances the level of bcl-2 expression. These results suggest that PR may exert protective effects against EtOH-induced apoptosis in human neuroblastoma cells.

Effects of CF4 Plasma Treatment on Characteristics of Enhancement Mode AlGaN/GaN High Electron Mobility Transistors

  • Horng, Ray-Hua;Yeh, Chih-Tung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.62-62
    • /
    • 2015
  • In this study, we study the effects of CF4 plasma treatment on the characteristics of enhancement mode (E-mode) AlGaN/GaN high electron mobility transistors (HEMTs). The CF4 plasma is generated by inductively coupled plasma reactive ion etching (ICP-RIE) system. The CF4 gas is decomposed into fluorine ions by ICP-RIE and then fluorine ions will effect the AlGaN/GaN interface to inhibit the electron transport of two dimension electron gas (2DEG) and increase channel resistance. The CF4 plasma method neither like the recessed type which have to utilize Cl2/BCl3 to etch semiconductor layer nor ion implantation needed high power to implant ions into semiconductor. Both of techniques will cause semiconductor damage. In the experiment, the CF4 treatment time are 0, 50, 100, 150, 200 and 250 seconds. It was found that the devices treated 100 seconds showed best electric performance. In order to prove fluorine ions existing and CF4 plasma treatment not etch epitaxial layer, the secondary ion mass spectrometer confirmed fluorine ions truly existing in the sample which treatment time 100 seconds. Moreover, transmission electron microscopy showed that the sample treated time 100 seconds did not have etch phenomena. Atomic layer deposition is used to grow Al2O3 with thickness 10, 20, 30 and 40 nm. In electrical measurement, the device that deposited 20-nm-thickness Al2O3 showed excellent current ability, the forward saturation current of 210 mA/mm, transconductance (gm) of 44.1 mS/mm and threshold voltage of 2.28 V, ION/IOFF reach to 108. As IV concerning the breakdown voltage measurement, all kinds of samples can reach to 1450 V.

  • PDF

LncRNA LINC01232 Enhances Proliferation, Angiogenesis, Migration and Invasion of Colon Adenocarcinoma Cells by Downregulating miR-181a-5p

  • Yu Yuan;Zhou Long
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.398-409
    • /
    • 2023
  • LncRNAs play crucial roles in the progression of colon adenocarcinoma (COAD), but the role of LINC01232 in COAD has not received much attention. The present study was designed to explore the related mechanisms of LINC01232 in the progression of COAD. LINC01232, miR-181a-5p, p53, c-myc, Bcl-2, cyclin D1, p16, Bax, VEGF, E-cadherin, vimentin, N-cadherin and SDAD1 expressions were determined by western blot and qRT-PCR. CCK-8, tubule formation, and Transwell assays were employed to detect proliferation, angiogenesis, and migration/invasion of COAD cells, respectively. The relationship between LINC01232 and miR-181a-5p was predicted by LncBase Predicted v.2, and then verified through dual luciferase reporter gene assay. According to the results, LINC01232 was highly expressed in COAD cells and enhanced proliferation, angiogenesis, migration, and invasion of COAD cells. Downregulated LINC01232 promoted expression of p53 and p16, and inhibited c-myc, Bcl-2 and cyclin D1 expressions in COAD cells, while upregulation of LINC01232 generated the opposite effects. LINC01232 was negatively correlated with miR-181a-5p while downregulated miR181a-5p could reverse the effects of siLINC01232 on cell proliferation, angiogenesis, migration, and invasion. Similarly, miR-181a-5p mimic could also offset the effect of LINC01232 overexpression. SiLINC01232 increased the expressions of Bax and E-cadherin, and decreased the expressions of VEGF, vimentin, N-cadherin and SDAD1, which were partially attenuated by miR-181a-5p inhibitor. Collectively, LINC01232 enhances the proliferation, migration, invasion, and angiogenesis of COAD cells by decreasing miR-181a-5p expression.

Liver Kinase B1 Mediates Its Anti-Tumor Function by Binding to the N-Terminus of Malic Enzyme 3

  • Seung Bae Rho;Hyun Jung Byun;Boh-Ram Kim;Chang Hoon Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.330-339
    • /
    • 2023
  • Liver kinase B1 (LKB1) is a crucial tumor suppressor involved in various cellular processes, including embryonic development, tumor initiation and progression, cell adhesion, apoptosis, and metabolism. However, the precise mechanisms underlying its functions remain elusive. In this study, we demonstrate that LKB1 interacts directly with malic enzyme 3 (ME3) through the N-terminus of the enzyme and identified the binding regions necessary for this interaction. The binding activity was confirmed to promote the expression of ME3 in an LKB1-dependent manner and was also shown to induce apoptosis activity. Furthermore, LKB1 and ME3 overexpression upregulated the expression of tumour suppressor proteins (p53 and p21) and downregulated the expression of antiapoptotic proteins (nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and B-cell lymphoma 2 (Bcl-2)). Additionally, LKB1 and ME3 enhanced the transcription of p21 and p53 and inhibited the transcription of NF-κB. Moreover, LKB1 and ME3 suppressed the phosphorylation of various components of the phosphatidylinositol-4,5-bisphosphate 3-kinase/protein kinase B signaling pathway. Overall, these results suggest that LKB1 promotes pro-apoptotic activities by inducing ME3 expression.

NDP Kinases Suppressed Bax-Dependent Apoptosis in Yeast System

  • K. C. Hwang;D. W. Ok;D. N. Kwon;H. K. Shin;Kim, J. H.
    • Proceedings of the KSAR Conference
    • /
    • 2001.03a
    • /
    • pp.52-52
    • /
    • 2001
  • Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic Many nucleoside diphosphate (NDP) kinases are ubiquitous enzymes responsible for the exchange of ${\gamma}$-phosphates between tri- and diphosphonucleosides. The catalytic reaction follows a ping-pong mechanism in which the enzyme is transiently phosphorylated on a histidine residue conserved in all nucleoside diphosphate kinases. Beside their role in nucleotide synthesis, these enzymes present additional functions, possibly independent of catalysis, in processes such as differentiation, cell growth, tumor progression, metastasis and development. To clone murine nm23-M5, several expressed sequence tags (ESTs) of the GenBank data base, selected according to their homology to nm23-H5 cDNA, reconstituted a complete open reading frame (GenBank AF222750). To test whether murine NDPKs (1, 2, 3, 4, 5, and 6) can inhibit Bax-mediated toxicity in yeast, co-transformation was performed respectively. The yeast S.cerevisiae was transformed with a copy expression plasmid containing the histidine selection marker and expressing murine Bax under the control of a galactose-inducible promoter. Several clones were selected and found to be growth inhibited when Bax expression was induced with galactose. A representative clone was transformed again with a copy expression plasmid containing the tryptophane selection marker and expressing either murine Bcl-xL or NDPK under the control of a galactose-inducible promoter. Several subclones of the double-transformants were selected and characterized. The ability of Bcl-xL and NDPKs to suppress Bax-mediated toxicity was determined by growing yeast cells overnight in galactose media and spot-testing on galactose plates starting with an equal number of yeast cells as determined by taking the OD$_{600}$. Ten-fold serial dilutions were used in the spot-test. Plates were grown at 3$0^{\circ}C$ for 2-3 days. All murine NDPKs suppressed Bax dependent apoptosis. Futher study will be peformed whether Bax-toxicity inhibition was caused by NDP kinase activity or additional function.n.

  • PDF

Etching Property of the TaN Thin Film using an Inductively Coupled Plasma (유도결합플라즈마를 이용한 TaN 박막의 식각 특성)

  • Um, Doo-Seung;Woo, Jong-Chang;Kim, Dong-Pyo;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.104-104
    • /
    • 2009
  • Critical dimensions has rapidly shrunk to increase the degree of integration and to reduce the power consumption. However, it is accompanied with several problems like direct tunneling through the gate insulator layer and the low conductivity characteristic of poly-silicon. To cover these faults, the study of new materials is urgently needed. Recently, high dielectric materials like $Al_2O_3$, $ZrO_2$ and $HfO_2$ are being studied for equivalent oxide thickness (EOT). However, poly-silicon gate is not compatible with high-k materials for gate-insulator. To integrate high-k gate dielectric materials in nano-scale devices, metal gate electrodes are expected to be used in the future. Currently, metal gate electrode materials like TiN, TaN, and WN are being widely studied for next-generation nano-scale devices. The TaN gate electrode for metal/high-k gate stack is compatible with high-k materials. According to this trend, the study about dry etching technology of the TaN film is needed. In this study, we investigated the etch mechanism of the TaN thin film in an inductively coupled plasma (ICP) system with $O_2/BCl_3/Ar$ gas chemistry. The etch rates and selectivities of TaN thin films were investigated in terms of the gas mixing ratio, the RF power, the DC-bias voltage, and the process pressure. The characteristics of the plasma were estimated using optical emission spectroscopy (OES). The surface reactions after etching were investigated using X-ray photoelectron spectroscopy (XPS) and auger electron spectroscopy (AES).

  • PDF