• Title/Summary/Keyword: $B^*$-algebra

Search Result 324, Processing Time 0.03 seconds

THE IMAGES OF LOCALLY FINITE 𝓔-DERIVATIONS OF POLYNOMIAL ALGEBRAS

  • Lv, Lintong;Yan, Dan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.73-82
    • /
    • 2022
  • Let K be a field of characteristic zero. We first show that images of the linear derivations and the linear 𝓔-derivations of the polynomial algebra K[x] = K[x1, x2, …, xn] are ideals if the products of any power of eigenvalues of the matrices according to the linear derivations and the linear 𝓔-derivations are not unity. In addition, we prove that the images of D and 𝛿 are Mathieu-Zhao spaces of the polynomial algebra K[x] if D = ∑ni=1 (aixi + bi)∂i and 𝛿 = I - 𝜙, 𝜙(xi) = λixi + 𝜇i for ai, bi, λi, 𝜇i ∈ K for 1 ≤ i ≤ n. Finally, we prove that the image of an affine 𝓔-derivation of the polynomial algebra K[x1, x2] is a Mathieu-Zhao space of the polynomial algebra K[x1, x2]. Hence we give an affirmative answer to the LFED Conjecture for the affine 𝓔-derivations of the polynomial algebra K[x1, x2].

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

CRYSTAL B(λ) IN B(∞) FOR G2 TYPE LIE ALGEBRA

  • Kim, Min Kyu;Lee, Hyeonmi
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.427-442
    • /
    • 2014
  • A previous work gave a combinatorial description of the crystal B(${\infty}$), in terms of certain simple Young tableaux referred to as the marginally large tableaux, for finite dimensional simple Lie algebras. Using this result, we present an explicit description of the crystal B(${\lambda}$), in terms of the marginally large tableaux, for the $G_2$ Lie algebra type. We also provide a new description of B(${\lambda}$), in terms of Nakajima monomials, that is in natural correspondence with our tableau description.

REAL RANK OF $C^*$-ALGEBRAS OF TYPE I

  • Sudo, Takahiro
    • The Pure and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.333-340
    • /
    • 2010
  • We estimate the real rank of a composition series of closed ideals of a $C^*$-algebra such that its subquotients have continuous trace, which is equivalent to that the $C^*$-algebra is of type I.

ON THE SEPARATING IDEALS OF SOME VECTOR-VALUED GROUP ALGEBRAS

  • Garimella, Ramesh V.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.737-746
    • /
    • 1999
  • For a locally compact Abelian group G, and a commutative Banach algebra B, let $L^1$(G, B) be the Banach algebra of all Bochner integrable functions. We show that if G is noncompact and B is a semiprime Banach algebras in which every minimal prime ideal is cnotained in a regular maximal ideal, then $L^1$(G, B) contains no nontrivial separating idal. As a consequence we deduce some automatic continuity results for $L^1$(G, B).

  • PDF

PREGROUPS AND PRE-B-ALGEBRAS

  • WU, GANG;KIM, YOUNG HEE
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.1_2
    • /
    • pp.51-57
    • /
    • 2018
  • In this paper, we introduce the notions of pregroups, post-groups and pre-B-algebras, and we investigate their relations. Using this notions we give another proof that the notion of B-algebras coincides with the notion of pregroups.

AUTOMATIC CONTINUITY OF HOMOMORPHIMS FROM BANACH ALGEBRAS

  • Kim, Gil-Tae
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.273-278
    • /
    • 1997
  • Let A be a Banach algebra and B a semisimple annifilator Banach algebra. Then every homomorphism from A into B with range is continuous. Also we obtain condition s for the automatic continuity of homomorphism with dense range.