• Title/Summary/Keyword: $Au@TiO_2$

Search Result 162, Processing Time 0.02 seconds

Synthesis and Characterization of Au/TiO2 Nanoparticles with Core-shell Structure (Core-shell 구조의 Au/TiO2 나노 미립자의 합성 및 특성 평가)

  • ;Paul Mulvaney
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.9
    • /
    • pp.902-908
    • /
    • 2003
  • Au/TiO$_2$ core-shell structure nanoparticles were synthesised by sol-gel process, and the morphology and crystallinity of TiO$_2$ shell were investigated by TEM and UV-Vis. absorption spectrometer. Au/TiO$_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of TOAA (Titanium Oxide Acethylacetonate) in Au colloid ethanol solution with $H_2O$. The thickness of TiO$_2$ shell on the surface of Au particles was about 1 nm. To investigate the crystallinity of TiO$_2$ shell, UV light with 254 nm and radioactive lay of $^{60}$ CO were irradiated on the TiO$_2$ coated Au colloid ethanol solution. The surface plasmon phenomenon of Au nanoparticles appeared only when the radioactive lay was irradiated on the TiO$_2$ coated Au colloid ethanol solution. From these results, it was found that the TiO$_2$ shell was amorphous and the MUA (Mercaptoundecanoic Acid) layer on the Au particle for its dispersion didn't act as an obstacle to disturb the movement of electron onto the surface of Au particle.

Enhancing photoluminescence of Au - TiO2 nanoparticles using Drude model

  • Dang, Diem Thi-Xuan;Vu, Thi Hanh Thu
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.288-296
    • /
    • 2017
  • The enhancement of photoluminescence of Au-$TiO_2$ nanoparticles by surface plasmon resonance has been studied extensively by experiment in recent years. For the purpose of optimizing the photoluminescence property of Au-$TiO_2$ nanoparticles, the manufacturing parameters related to the Au nanoparticles and $TiO_2$ nanoparticles need to be considered. In this paper, Drude model and Maier's effective volume method are used to analyze the variation of the metal nanoparticle radius, separation between metal nanoparticle and dielectric molecule, and total absorption cross-section with original radiative efficiency on the photoluminescence property of Au-$TiO_2$ nanoparticles. The results show that to obtain the optimized enhancement factor for photoluminescence process, the size of Au nanoparticle is about 13 - 20 nm, the separation between Au nanoparticle and $TiO_2$ molecule is about 5 -15 nm, the total absorption cross-section of $TiO_2$ molecules is about $1-100nm^2$ and the original radiative efficiency of $TiO_2$ molecule is weak about 0.001- 0.1. With these fabrication parameters, the photoluminescence property of Au-$TiO_2$ nanoparticles can be enhanced several thousand times compared to traditional $TiO_2$ nanoparticles.

Aging Effect on the Antimicrobial Activity of Nanometal (Au, Ag)-Titanium Dioxide Nanocomposites (Aging 효과에 따른 나노메탈(Au, Ag)-이산화티탄 복합체의 항균 활성도)

  • Park, Hye-Rim;Lee, Sang-Wha;Yoo, In-Sang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.3
    • /
    • pp.293-296
    • /
    • 2012
  • Nanocomposites were fabricated as titanium dioxide ($TiO_2$) doped with nanometals (Au, Ag) by sonochemical reduction method and sol-gel method in order to investigate their antimicrobial activities. Then, the antimicrobial activity of the resulting samples was compared by the measurement of colony numbers survived on the agar plate incubated for 24 h after the loading E. coli on the solid-state media with the nanocomposites. The initial antimicrobial activity of the metal (Au, Ag)-doped $TiO_2$ was higher than that of the pristine $TiO_2$. Afterwards the nanocomposite samples were kept at $4^{\circ}C$ for a long time and the aged samples exhibited the different antimicrobial activity. With the elapse of aging times, Ag-doped $TiO_2$ with $TiO_2$ coating ($Ag-TiO_2$@$TiO_x$) exhibited the higher antimicrobial activity than those of $Ag-TiO_2$and $Au-TiO_2$. The $TiO_2$ coating on the $Ag-TiO_2$ may prevent the oxidation of Ag nanometals and stabilize colloidal nanocomposites.

Ethanol Sensing Properties of TiO2 Nanowires Sensor Decorated with Au Nanoparticles (Au 나노입자가 코팅된 TiO2 나노와이어의 에탄올가스 검출 특성)

  • Kang, Wooseung
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.5
    • /
    • pp.238-244
    • /
    • 2015
  • $TiO_2$ nanowires were synthesized by hydrothermal method for the application to ethanol gas sensor. $TiO_2$ nanowires were decorated with Au nanoparticles to improve the sensitivity to ethanol gas. Scanning electron microscopy and Transmission electron microscopy revealed that the synthesized nanowires had diameters and lengths of approximately 100 - 200 nm and a few micrometers, respectively. Size of the Au nanoparticles decorated on the $TiO_2$ nanowires was observed to be in the range of 10 - 20 nm. X-ray diffraction confirmed that the decorated nanowires were composed of anatase-, rutile-$TiO_2$, and Au. The sensitivities of $TiO_2$ nanowires sensors decorated with Au were approximately 1.1 - 3.65 times as high as those of as-synthesized $TiO_2$ sensors for the ethanol concentration of 5 - 100 ppm at $200^{\circ}C$. The mechanism of the improved ethanol gas sensing of the $TiO_2$ nanowires decorated with Au nanoparticles is discussed.

Direct Synthesis of Au/TiO2/graphene Composites and Their Application for Degradation of Various Organic Dyes (그래파이트로부터 직접 제조한 Au/TiO2/그래핀 복합체와 이를 이용한 염료의 광분해에 관한 연구)

  • Jeong, Gyoung Hwa;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.607-611
    • /
    • 2020
  • In this research, we synthesized Au/TiO2/graphene composites using ionic surfactants for the exfoliation of graphite layers, directly. In the graphene composite, TiO2 with thin nanosheet shapes was distributed on the graphene surface and Au nanoparticles with less than 10 nm sizes were evenly distributed on the surface of the TiO2 nanosheets. The Au/TiO2/graphene composite was then applied to the photodegradation of various dyes such as methylene blue, methylene orange and rhodamine 6G, and B. Among them, the methylene blue showed the most excellent photodegradation activity (91.6%) while the rhodamine B exhibited 31.0%.

Properties of Au Clusters Supported on $TiO_2$ Studied by XPS, ISS, AES, and TPD (XPS, ISS, AES, TPD를 이용한 $TiO_2$ 위에 지지된 Au 클러스터의 특성 연구)

  • Kim, Dae Young
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.6
    • /
    • pp.607-617
    • /
    • 1998
  • Au was dosed on $TiO_2(001)$ film grown epitaxially on Mo(100) surface in about 90 ${\AA}$ thickness. The growth mode of Au, thermal behavior and stability of the Au clusters, and the binding energy shift of Au 4f with the change in the amount of Au loading were studied by Auger Electron Spectroscopy (AES), Temperature Programmed Desorption (TPD) spectroscopy, Ion Scattering Spectroscopy (ISS), and X-ray Photoelectron Spectroscopy (XPS). Au grows three dimensionally on $TiO_2(001)$ film and the average size of Au clusters prepared at low temperature is smaller than those at higher temperature and the size increases with temperature irreversibly. Au clusters on $TiO_2(001)/Mo(100)$ start evaporation at 1000 K. TPD spectra of Au show very asymmetric peaks with the same leading edges irrespective of the amount of Au loading. The temperature at the peak maximum increases with the amount of Au. The desorption energy of Au obtained from the leading edge analysis of the TPD spectra is about 50 kcal/mol. The initial sticking coefficient of Au on $TiO_2(001)$ is constant in the temperature range of 200-600 K. The binding energy of Au 4f for the Au loaded on the film less than 2.0 MLE shifts to higher energy compared with the bulk Au. The shift is +0.3 eV at 0.1 MLE Au amount.

  • PDF

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Khan, Mohammad Mansoob;Kalathil, Shafeer;Lee, Jin-Tae;Cho, Moo-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1753-1758
    • /
    • 2012
  • A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

Preparation of Au fine particle dispersedf $TiO_{2}$ film by sol-gel and photoreduction process (Sol-Gel and photoreduction 공정에 의한 Au 미립자분산 $TiO_{2}$ 박막 제조)

  • 현부성;김병일;강원호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.23-28
    • /
    • 1999
  • Au fine particles dispersed $TiO_{2}$ film was prepared on silica glass substrate by sol-gel dipping and firing process. The $TiO_{2}$ films were fabricated from the system of titanium tetraisopropoxide-EtOH-HCl-$H_{2}O$-hydrogen tetrachloroaurat (III) tetrahydrate. The conditions for the formation of clear solution and dissolving high concentration of Au compound were examined. Photoreduction process was adopted to control the size of gold metal particles. Phase evolution of matrix $TiO_{2}$ and variation of Au particle with UV irradiation were investigated by XRD, SEM, TEM and UV-visible spectrophotometer. The effect of CPCl (Cetylpyridinium chloride monohydrate) as a dispersion agent was evaluated.

  • PDF

Synthesis of Au/TiO2 Core-Shell Nanoparticles by Using TTIP/TEOA Mixed Solution (TTIP/TEOA 혼합용액을 이용한 Au/TiO2 Core-Shell 구조 나노입자 합성)

  • Kwon, Hyun-Woo;Lim, Young-Min;Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.524-528
    • /
    • 2006
  • On the synthesis of Au/$TiO_2$ core-shell structure nanoparticle, the effect of concentration of $Ti^{4+}$ and reaction temperature on the morphology and optical property of Au/$TiO_2$ core-shell nanoparticles is examined. A gold colloid was prepared by $HAuCl_4{\cdot}4H_2O\;and\;C_6H_5Na_3{\cdot}2H_2O$. Titanium stock solution was prepared by mixing solution of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentrations of $Ti^{4+}$ stock solution were adjusted to $10.01{\sim}0.3$ mM, and then the gold colloid is added to the $Ti^{4+}$ stock solution. Au/$TiO_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of the $Ti^{4+}$ stock solution at $80^{\circ}C$. The size of synthesized Au nanoparticles was 15 nm. The thickness of $TiO_2$ shell on the surface of gold particles was about 10 nm. The absorption peak of synthesized Au/$TiO_2$ core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of $TiO_2$ shell on the surface of gold particles. The good $TiO_2$ shell is produced when $Ti^{4+}$ concentration is varied between 0.01 and 0.05 mM, and reaction temperature is maintained at $80^{\circ}C$. The crystal structure of $TiO_2$ shell was amorphous.

Effects of pH on Preparation of Au-Coated $TiO_2$ Nanoparticles by Deposition-Precipitation Method

  • Nguyen, Dung The;Kim, Dong-Joo;Kim, Kyo-Seon
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.150-150
    • /
    • 2009
  • We prepared the Au-coated $TiO_2$ (Au/$TiO_2$) nanoparticles by deposition-precipitation (DP) method with and without bases (urea or NaOH) and investigated the effects of pH on the preparation of Au/$TiO_2$ nanoparticles for various kinds of bases. For the DP method without bases, the Au nanoparticles in the diameter of about 50 nm were generated in the solution by the reduction reaction with trisodium citrate and they did not deposit on the surface of $TiO_2$. For the DP method with bases, Au precursors deposited on the surface of $TiO_2$ and then reduced to the Au nanoparticles in the diameter of 4-5 nm on the surface of $TiO_2$ by the reaction with trisodium citrate.

  • PDF