DOI QR코드

DOI QR Code

Enhancement in the Photocatalytic Activity of Au@TiO2 Nanocomposites by Pretreatment of TiO2 with UV Light

  • Received : 2012.01.18
  • Accepted : 2012.02.27
  • Published : 2012.05.20

Abstract

A novel, efficient and controlled protocol for the synthesis and enhanced photocatalytic activity of $Au@TiO_2$ nanocomposite is developed. $TiO_2$ (P25) was pretreated by employing UV light (${\lambda}$ = 254 nm) and the pretreated $TiO_2$ was uniformly decorated by gold nanoparticles (AuNPs) in presence of sodium citrate and UV light. UV pretreatment makes the $TiO_2$ activated, as electrons were accumulated within the $TiO_2$ in the conduction band. These accumulated electrons facilitate the formation of AuNPs which were of very small size (2-5 nm), similar morphology and uniformly deposited at $TiO_2$ surface. It leads to formation of stable and crystalline $Au@TiO_2$ nanocomposites. The rapidity (13 hours), monodispersity, smaller nanocomposites and easy separation make this protocol highly significant in the area of nanocomposites syntheses. As-synthesized nanocomposites were characterized by TEM, HRTEM, TEM-EDX, SAED, XRD, UV-visible spectrophotometer and zeta potential. Dye degradation experiments of methyl orange show that type I ($Au@TiO_2$ nanocomposites in which $TiO_2$ was pretreated with UV light) has enhanced photocatalytic activity in comparison to type II ($Au@TiO_2$ nanocomposites in which $TiO_2$ was not pretreated with UV light) and $TiO_2$ (P25). This shows that pretreatment of $TiO_2$ provides type I a better catalytic activity.

Keywords

References

  1. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301.
  2. Haruta, M. Catal. Today 1997, 36, 153. https://doi.org/10.1016/S0920-5861(96)00208-8
  3. Bond, G. C.; Sermon, P. A.; Webb, G.; Buchanan, D. A.; Wells, P. B. J. Chem. Soc. Chem. Commun. 1973, 13, 444.
  4. Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45, 896 https://doi.org/10.1002/anie.200502421
  5. Hashmi, A. S. K.; Hutchings, G. J. Angew Chem 2006, 118, 8064. https://doi.org/10.1002/ange.200602454
  6. Corma, A.; Garcia, H. Chem. Soc. Rev. 2008, 37, 2096. https://doi.org/10.1039/b707314n
  7. Haruta, M. Cattech 2002, 6, 102. https://doi.org/10.1023/A:1020181423055
  8. Bond, G. C.; Thompson, D. T. Gold. Bull. 2000, 33, 41. https://doi.org/10.1007/BF03216579
  9. Rodriguez, J. A.; Liu, G.; Jirsak, T.; Hrbek, J.; Chang, Z. P.; Dvorak, J.; Maiti, A. J. Am. Chem. Soc. 2002, 124, 5242. https://doi.org/10.1021/ja020115y
  10. Tabakova, T.; Idakiev, V.; Andreeva, D.; Mitov, I. Appl. Catal. A 2000, 202, 91. https://doi.org/10.1016/S0926-860X(00)00463-4
  11. Schwartz, V.; Mullins, D. R.; Yan, W.; Chen, B.; Dai, S.; Overbury, S. H. J. Phys. Chem. B 2004, 108, 15782. https://doi.org/10.1021/jp048076v
  12. Chen, M.; Goodman, D. W. Chem. Soc. Rev. 2008, 37, 1860. https://doi.org/10.1039/b707318f
  13. Primo, A.; Corma, A.; García, H. Phys. Chem. Chem. Phys. 2011, 13, 886. https://doi.org/10.1039/c0cp00917b
  14. Li, H.; Bian, Z.; Zhu, J.; Huo, Y.; Li, H.; Lu, Y. J. Am. Chem. Soc. 2007, 129, 4538. https://doi.org/10.1021/ja069113u
  15. Kamat, P. V. J. Phys. Chem. C 2007, 111, 2834. https://doi.org/10.1021/jp066952u
  16. Schubert, M. M.; Hackenberg, S.; Veen, A. C. V.; Muhler, M.; Plzak, V.; Behm, R. J. J. Catal. 2001, 197, 113. https://doi.org/10.1006/jcat.2000.3069
  17. Boccuzzi, F.; Chiorino, A.; Manzoli, M. Mat. Sci. Eng. C 2001, 15, 215. https://doi.org/10.1016/S0928-4931(01)00222-3
  18. Arabatzis, I. M.; Stergiopoulos, T.; Andreeva, D.; Kitova, S.; Neophytides, S. G.; Falaras, P. J. Catal. 2003, 220, 127. https://doi.org/10.1016/S0021-9517(03)00241-0
  19. Tian, Y.; Tatsuma, T. J. Am. Chem. Soc. 2005, 127, 7632. https://doi.org/10.1021/ja042192u
  20. Zotova, N.; Roberts, F. J.; Kelsall, G. H.; Jessima, A. S.; Hellgardt, K.; Hii, K. K. Green Chemistry 2012, 14, 226. https://doi.org/10.1039/c1gc16118k
  21. Grirrane, A.; Corma, A.; García, H. Science 2008, 322, 1661. https://doi.org/10.1126/science.1166401
  22. Murdoch, M.; Waterhouse, G. I. N.; Nadeem, M. A.; Metson, J. B.; Keane, M. A.; Howe, R. F.; Llorca, J.; Idriss, H. Nature Chemistry 2011, 3, 489. https://doi.org/10.1038/nchem.1048
  23. Silva, C. G.; Rez, R. J.; Marino, T.; Molinari, R.; García, H. J. Am. Chem. Soc. 2011, 133, 595. https://doi.org/10.1021/ja1086358
  24. Valden, M.; Lai, X.; Goodman, D. W. Science 1998, 281, 1647. https://doi.org/10.1126/science.281.5383.1647
  25. Nguyen, T.-V.; Lee, H.-C.; Yang, O.-B. Solar Energy Mat. & Solar Cells 2006, 90, 967. https://doi.org/10.1016/j.solmat.2005.06.001
  26. May, R. A.; Patel, M. N.; Johnston, K. P.; Stevenson, K. J. Langmuir 2009, 25, 4498. https://doi.org/10.1021/la8038158
  27. Jakob, M.; Levanon, H.; Kamat, P. V. Nano. Lett. 2003, 3, 353. https://doi.org/10.1021/nl0340071
  28. Liu, K.; Zhang, M.; Zhou, W.; Li, L.; Wang, J.; Fu, H. Nanotechnology 2005, 16, 3006. https://doi.org/10.1088/0957-4484/16/12/046
  29. Yang, Y. F.; Sangeetha, P.; Chen, Y. W. Int. J. Hydrogen Energy 2009, 34, 8912. https://doi.org/10.1016/j.ijhydene.2009.08.087
  30. Chen, S. F.; Li, J. P.; Qian, K.; Xu, W. P.; Lu, Y.; Huang, W. X.; Yu, S. H. Nano. Res. 2010, 3, 244. https://doi.org/10.1007/s12274-010-1027-z
  31. Yates, J. T., Jr. Surface Science 2009, 603, 1605. https://doi.org/10.1016/j.susc.2008.11.052
  32. Lahiri, D.; Subramanian, V.; Shibata, T.; Wolf, E. E.; Bunker, B. A.; Kamat, P. V. J. Appl. Phys. 2003, 93, 2575. https://doi.org/10.1063/1.1544068
  33. Zhu, B.; Li, K.; Feng, Y.; Zhang, S.; Wu, S.; Huang, W. Catalysis Letters 2007, 118, 55. https://doi.org/10.1007/s10562-007-9139-0
  34. Tian, B.; Zhang, J.; Tong, T.; Chen, F. Applied Catalysis B: Environmental 2008, 79, 394. https://doi.org/10.1016/j.apcatb.2007.11.001
  35. Ismail, A. A.; Bahnemann, D. W.; Bannat, I.; Wark, M. J. Phys. Chem. C 2009, 113, 7429. https://doi.org/10.1021/jp900766g
  36. Anandan, S.; Ashokkumar, M. Ultrasonics Sonochemistry 2009, 16, 316. https://doi.org/10.1016/j.ultsonch.2008.10.010
  37. Li, J.; Zen, H. C. Chem. Mater. 2006, 18, 4270. https://doi.org/10.1021/cm060362r
  38. Madler, L.; Stark, W. J.; Pratsinis, S. E. J. Mater. Res. 2003, 18, 115. https://doi.org/10.1557/JMR.2003.0017
  39. Lin, J.; Lin, Y.; Liu, P.; Meziani, M. J.; Allard, L. F.; Sun, Y. P. J. Am. Chem. Soc. 2002, 124, 11514. https://doi.org/10.1021/ja0206341
  40. Polte, J.; Ahner, T. T.; Delissen, F.; Sokolov, S.; Emmerling, F.; Thünemann, A. F.; Kraehnert, R. J. Am. Chem. Soc. 2010, 132, 1296. https://doi.org/10.1021/ja906506j
  41. Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Anal. Chem. 1995, 67, 735. https://doi.org/10.1021/ac00100a008
  42. Mie, G. Ann. Phys. 1908, 25, 377.
  43. Tsunoyama, H.; Ichikuni, N.; Sakurai, H.; Tsukuda, T. J. Am. Chem. Soc. 2009, 131, 7086. https://doi.org/10.1021/ja810045y
  44. Dawson, A.; Kamat, P. V. J. Phys. Chem. B 2001, 105, 960. https://doi.org/10.1021/jp0033263
  45. Zhou, W.; Liu, Q.; Zhu, Z.; Zhang, J. J. Phys. D: Appl. Phys. 2010, 43, 035301 (6 pages). https://doi.org/10.1088/0022-3727/43/3/035301
  46. DOI: 10.1088/0022-3727/43/3/035301.
  47. Othman, S. H.; Rashid, S. A.; Ghazi, T. I. M.; Abdullah, N. J. of Nanomaterials 2011, Article ID 571601, 8 pages, DOI: 10.1155/ 2011/571601.
  48. Othman, S. H.; Rashid, S. A.; Ghazi, T. I. M.; Abdullah, N. J. of Nanomaterials 2010, Article ID 512785, 10 pages, DOI: 10.1155/ 2010/512785.
  49. Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004, 126, 4943. https://doi.org/10.1021/ja0315199

Cited by

  1. Photocatalytic degradation of N-heterocyclic aromatics—effects of number and position of nitrogen atoms in the ring vol.20, pp.6, 2013, https://doi.org/10.1007/s11356-012-1313-2
  2. Highly visible light active Ag@TiO2 nanocomposites synthesized using an electrochemically active biofilm: a novel biogenic approach vol.5, pp.10, 2013, https://doi.org/10.1039/c3nr00613a
  3. nanostructures engineered by electrochemically active biofilm vol.38, pp.6, 2014, https://doi.org/10.1039/C3NJ01488F
  4. Nanostructures for Visible Light Activities vol.53, pp.23, 2014, https://doi.org/10.1021/ie500986n
  5. for visible light applications: a comparative study vol.39, pp.6, 2015, https://doi.org/10.1039/C5NJ00556F
  6. Selective deposition of Au-Pt alloy nanoparticles on ellipsoidal zirconium titanium oxides for reduction of 4-nitrophenol vol.34, pp.9, 2017, https://doi.org/10.1007/s11814-017-0156-4
  7. O: A first principles investigation vol.23, pp.5, 2014, https://doi.org/10.1088/1674-1056/23/5/057104
  8. Microbial fuel cell assisted band gap narrowed TiO2 for visible light-induced photocatalytic activities and power generation vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-19617-2
  9. PHOTOCHEMICAL FABRICATION OF TRANSITION METAL NANOPARTICLES USING CdS TEMPLATE AND THEIR CO-CATALYSIS EFFECTS FOR TiO2 PHOTOCATALYSIS vol.12, pp.3, 2012, https://doi.org/10.1142/s0219581x13500208
  10. Band gap engineered TiO2nanoparticles for visible light induced photoelectrochemical and photocatalytic studies vol.2, pp.3, 2012, https://doi.org/10.1039/c3ta14052k
  11. Enhanced sensing of hazardous 4-nitrophenol by a graphene oxide-TiO2 composite: environmental pollutant monitoring applications vol.44, pp.11, 2020, https://doi.org/10.1039/c9nj06176b
  12. Green synthesis of Ag/TiO2composite coated porous vanadophosphates with enhanced visible-light photo-degradation and catalytic reduction performance for removing organic dyes vol.49, pp.23, 2020, https://doi.org/10.1039/d0dt00797h
  13. Eco-Friendly Synthesis of SnO2-Cu Nanocomposites and Evaluation of Their Peroxidase Mimetic Activity vol.11, pp.7, 2012, https://doi.org/10.3390/nano11071798
  14. Electronic properties of (TiO2)33 nanocrystals with nitrogen impurities at different facets: a DFT study vol.47, pp.14, 2012, https://doi.org/10.1080/08927022.2021.1962010