• 제목/요약/키워드: $Al_2O_3-TiC$ composites

검색결과 77건 처리시간 0.023초

Microstructure, Mechanical and Wear Properties of Hot-pressed $Si_3N_4-TiC$ Composites

  • Hyun Jin Kim;Soo Whon Lee;Tadachika Nakayama;Koichi Niihara
    • The Korean Journal of Ceramics
    • /
    • 제5권4호
    • /
    • pp.317-323
    • /
    • 1999
  • Si3N4-TiC composites have been known as electrically conductive ceramics. $Si_3N_4-TiC$ composites with 2 wt% $Al_2O_3$ and 4 wt% $Y_2O_3$ were hot pressed in $N_2$ environment. The mechanical properties including hardness, fracture toughness, and flexural strength and tribological properties were investigated as a function of TiC content. $Si_3N_4-40$ vol% TiC composite was hot pressed at $1,750^{\circ}C$, $1,800^{\circ}C$, and $1,850^{\circ}C$ for 1, 3 and 5 hours in $N_2$ gas. Mechanical and tribolgical properties depended on microstructures, which were controlled by hte TiC content, hot press temperature, and hot press holding time. However, mechanical properties and tribological behaviors were degraded by the chemical reaction between TiC and N. The chemically reacted products such as TiCN, SiC, and $SiO_2$ were detered by the X-ray diffraction analysis.

  • PDF

SHS법에 의해 제조된 $Al_2O_3$-TiC복합분말과 $Al_2O_3$단섬유를 강화재로 사용한 하이브리드 금속기 복합재료의 제조 (Manufacturing of Hybrid Metal Matrix Composites used $Al_2O_3$ Short Fiber and $Al_2O_3$-TiC Composite Powder Synthesized by SHS Process)

  • 김동현;맹덕영;이종현;원창환
    • 한국재료학회지
    • /
    • 제9권3호
    • /
    • pp.315-321
    • /
    • 1999
  • 금속기지 복합물은 구조용 재료로서 매우 우수한 성질을 지니고 있어 광범위하게 연구되어져 왔다. $Al_2O_3$와 SiC는 그들의 우수한 기계적 특성 때문에 일반적인 보강재로서 사용되어져 왔다. 그러나 이들 세라믹 보강재는 비싼 재조 비용 때문에 특별한 목적을 위해서만 한정되어 사용되어져 왔다. 본 연구에서는 우리는 Al 합금기지 복합물에서 SHS법에 의해 합성된 $Al_2O_3$-SiC 분말의 보강재로서의 응용 가능성을 살펴보았다. 또한 $Al_2O_3$단섬유를 Al기지 하이브리드 복합물에 적용하기 위하여 합성된 분말과 함께 첨가하였다. 25vol% 강화재의 복합물을 제조하기 위하여 용탕단조법을 사용하였다. 미세구조와 결정구조는 SEM, OM 그리고 XRD로 관찰하였고 압축시험과 마모시험으로 기계적인 성질들을 조사하였다.

  • PDF

상압소결 Si3N4-TiN 복합재료의 기계적성질 (Mechanical Properties of the Pressureless Sintered Si3N4-TiN Ceramic Composities)

  • 송진수;손용배;김종희
    • 한국세라믹학회지
    • /
    • 제26권3호
    • /
    • pp.409-415
    • /
    • 1989
  • Si3N4-TiN electro-conductive ceramic composites with 7wt% Al2O3+3wt% Y2O3 or 5wt% MgO as sintering aids were fabricated by pressureless sintering at 1,80$0^{\circ}C$ for 1h. The 3pt. flexural strength, KIC and Vickers hardness were measrued in order to investigate the effects of TiN on the mechanical properties. Also oxidation behavior was observed by measuring the weight gain after exposure to air at 1,10$0^{\circ}C$ for 100h. the reaction products between Si3N4 and TiN was not detected by XRD and EDS. Mechanical properties of the composites were not influenced by the addition of TiN less than 30vol%, but oxidation resistance of the composites was rapidly decreased with the amount of added TiN.

  • PDF

Spray Dry한 ${\beta}$-SiC-$TiB_2$ 도전성(導電性) 세라믹 복합체(複合體)의 특성(特性) (Properties of ${\beta}$-SiC-$TiB_2$ Electrocondutive Ceramic Composites by Spray Dry)

  • 신용덕;주진영;최광수;오상수;이동윤;임승혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 C
    • /
    • pp.1538-1540
    • /
    • 2003
  • The composites were fabricated respectively 61vol.% ${\beta}$-SiC and 39vol.% $TiB_2$ spray-dried powders with the liquid forming additives of 12wt% $Al_2O_3+Y_2O_3$ by pressureless annealing at $1700^{\circ}C,\;1750^{\circ}C\;1800^{\circ}C$ for 4 hours. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density, the Young's modulus and fracture toughness showed respectively the highest value of 92.97%, 92.88Gpa and $4.4Mpa{\cdot}m^{1/2}$ for composites by pressureless annealing temperature $1700^{\circ}C$ at room temperature. The electrical resistivity showed the lowest value of $8.09{\times}10^{-3}{\Omega}{\cdot}cm$ for composite by pressureless annealing tempe rature $1700^{\circ}C$ at $25^{\circ}C$. The electrical resistivity of the SiC-$TiB_2$ composites was all positive temperature cofficient resistance (PTCR) in the temperature ranges from $25^{\circ}C$ to $700^{\circ}C$.

  • PDF

전기용융 분말로부터 합성된 $Al_2$TiO$_5$ Ceramics의 열충격 저항성 (Thermal Shock Resistance of $Al_2$TiO$_5$ Ceramics Prepared from Electrofused Powders)

  • 김익진
    • 한국세라믹학회지
    • /
    • 제35권10호
    • /
    • pp.1061-1069
    • /
    • 1998
  • The thermal instability of Al2TiO5 Ceramics was contrlled by solid solution with MgO SiO2 and ZrO2 through electrofusion in an arc furnace. The thermal expansion properties of Al2TiO5 composites show the hysteresis due to the strong anisotropy of The crystal axes of these material. These phenomena are ex-plained by the opening and closing of microcracks. The difference in microcracking temperatures e.g 587.6(ATG2), 405.9(ATG3) and 519.7$^{\circ}C$(ATG4) is caused by the difference in grain size and stabilizer type. The thermal shock behaviour under cyclic conditions between 750-1400-75$0^{\circ}C$ show no change in mi-crostructure and phase assemblage for all three stabilized specimens. After the thermal loading test at 110$0^{\circ}C$ for 100hrs. ATG1 and ATG2 materials decomposes completely to its components corundum and ru-tile in both cases. However with approximatelly 20% retention of the Al2TiO5 Thus in order to prevent decomposition of the stabilized material in the critical temperature range 800-130$0^{\circ}C$ it must be traversed within a short period of time.

  • PDF

상압소결(常壓燒結)한 SiC-$ZrB_2$ 전도성(電導性) 복합체(複合體)의 특성(特性)에 미치는 In Situ YAG의 영향(影響) (Effect of In Situ YAG on Properties of the Pressureless-Sintered SiC-$ZrB_2$ Electroconductive Ceramic Composites)

  • 신용덕;주진영;고태헌;이정훈
    • 전기학회논문지
    • /
    • 제57권11호
    • /
    • pp.2015-2022
    • /
    • 2008
  • The effect of content of $Al_2O_3+Y_2O_3$ sintering additives on the densification behavior, mechanical and electrical properties of the pressureless-sintered $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressurless-sintered for 2 hours at 1,700[$^{\circ}C$] temperatures with an addition of $Al_2O_3+Y_2O_3$(6 : 4 mixture of $Al_2O_3$ and $Y_2O_3$) as a sintering aid in the range of $8\;{\sim}\;20$[wt%]. Phase analysis of $SiC-ZrB_2$ composites by XRD revealed mostly of $\alpha$-SiC(6H), $ZrB_2$ and In Situ YAG($Al_5Y_3O_{12}$). The relative density, flexural strength, Young's modulus and vicker's hardness showed the highest value of 89.02[%], 81.58[MPa], 31.44[GPa] and 1.34[GPa] for $SiC-ZrB_2$ composites added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at room temperature respectively. Abnormal grain growth takes place during phase transformation from $\beta$-SiC into $\alpha$-SiC was correlated with In Situ YAG phase by reaction between $Al_2O_3$ and $Y_2O_3$ additive during sintering. The electrical resistivity showed the lowest value of $3.l4{\times}10^{-2}{\Omega}{\cdot}cm$ for $SiC-ZrB_2$ composite added with 16[wt%] $Al_2O_3+Y_2O_3$ additives at 700[$^{\circ}C$]. The electrical resistivity of the $SiC-TiB_2$ and $SiC-ZrB_2$ composite was all negative temperature coefficient resistance (NTCR) in the temperature ranges from room temperature to 700[$^{\circ}C$]. Compositional design and optimization of processing parameters are key factors for controlling and improving the properties of SiC-based electroconductive ceramic composites.

High Temperature Tribological Behaviour of Particulate Composites in the System SiC-TiC-TiB2 during Dry Oscillating Sliding

  • Wasche, Rolf;Klaffke, Dieter
    • The Korean Journal of Ceramics
    • /
    • 제5권2호
    • /
    • pp.155-161
    • /
    • 1999
  • The tribological behaviour of monolithic SiC as well as SiC-TiC and SiC-TiC-$TiB_2$ particulate composite materials has been investigated in unlubricated oscillating sliding tests against $Al_2O_3$ at temperature in the range from room temperature up to $600^{\circ}C$. At temperatures below $600^{\circ}C$ the wear rate of the systems with the composite materials was up to 20 times lower than the wear of the $Al_2O_3$/SiC system and was dominated by the oxidation of the titanium phases. At $600^{\circ}C$ the oxidation rate of the TiC and -TEX>$TiB_2$ grains becomes predominant resulting in an enhanced wear rate of the composite rate of the TiC and TiB2 grains becomes predominant resulting in an enhanced wear rate of the composite materials. The coefficient of friction shows similar values for all materials of investigation, increasing from 0.25…0.3 at room temperature to 0.7…0.8 $600^{\circ}C$. The wear of the $Al_2O_3$/SiC system is mainly abrasive at temperatures above room temperature and is characterised by an enhanced wear of the alumina ball at $600^{\circ}C$.

  • PDF

SiO$_2$-TiO$_2$-RO(RO: BaO, CaO, SrO)계 고유전율 유리 제조 및 글라스/세라믹스의 소결 거동에 관한 연구 (A study on the glass fabrication and sintering behaviour of glass/ceramics for SiO2-TiO2-RO(RO: BaO, CaO, SrO) system)

  • 구기덕;오근호
    • 한국결정성장학회지
    • /
    • 제8권4호
    • /
    • pp.626-633
    • /
    • 1998
  • 본 연구에서는 고유전율의 저온소성용 글라스/세라믹을 제조하고자, SiO2-TiO2-RO계 결정화 유리를 제조하고 Al2O3를 필러 물질로 혼합하여 복합체를 제조하고 그 특성을 관찰하였다. 본 유리조성으로써 $900^{\circ}C$ 이하에서 결정화되는 유리의 제조가 가능하였고, RO (BaO, CaO, SrO)의 성분에 따라 결정화 온도는 변화함을 알 수 있었다. 본 유리조성에 $Bi_2O_3$를 플럭스로 첨가하고, 세라믹 필러로써 Al2O3를 사용하여 $860^{\circ}C$에서 소성함으로써 고유전율의 저온소성용 글라스/세라믹의 제조가 가능하였고, 이때 복합체의 밀도는 3.96g/$\textrm{cm}^3$ 이었고, 유전율은 17, Q.f 값은 600이었다.

  • PDF

상압소결법에 의해 제조한 SiC 복합체의 특성에 미치는 $TiB_{2},ZrB_{2}$와 소결온도의 영향 (Effects of $TiB_{2},ZrB_{2}$ and Sintering Temperature on SiC Composites Manufactured by Pressureless Sintering)

  • 주진영;박미림;신용덕;임승혁
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 하계학술대회 논문집
    • /
    • pp.381-384
    • /
    • 2001
  • The $\beta$-SiC+ZrB$_2$ and $\beta$-SiC+TiB$_2$ceramic electroconductive composites were pressureless-sintered and annealed by adding l2wt% A1$_2$ $O_3$+Y$_2$ $O_3$(6 : 4wt%) powder as a function of sintering temperature. The relative density showed highest value of 84.92% of the theoretical density for SiC-TiB$_2$ at 190$0^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), TiB$_2$, $Al_{5}$Y$_2$ $O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest of 230 MPa for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. The vicker's hardness increased with increasing sintering temperature and showed the highest for SiC-ZrB$_2$ composites sintered at 190$0^{\circ}C$. Owing to YAG, the fracture toughness showed the highest of 6.50 MPa . m$^{1}$2/ for SiC-ZrB$_2$ composites at 190$0^{\circ}C$. The electrical resistivity was measured by the Rauw method from $25^{\circ}C$ to $700^{\circ}C$. The electrical resistivity of the composites showed the PTCR(Positive Temperature Coefficient Resistivity).).

  • PDF

상압소결한 Al2O3-SiC계 소결체의 기계적 성질(2) : SiC Whisker의 분산효과 (Mechanical Properties of the Pressureless Sintered Al2O3-SiC Composites(2) : Dispersion Effects of SiC Whisker)

  • 김경수;이홍림
    • 한국세라믹학회지
    • /
    • 제25권6호
    • /
    • pp.704-712
    • /
    • 1988
  • In order to investigate the effect of the second phase on Al2O3 matrix, SiC whisker was dispersed in Al2O3 matrix as a second phase over the content range of 5vol% to 20vol%. To this mixture, Y2O3 or TiO2 powder was added as a sintering additive before isostatically pressing and pressureless sintering at 1800-190$0^{\circ}C$ for 90min in N2 atmosphere. With increasing SiC whisker content, relative densities of composites were decreased and the grain growth of Al2O3 was restricted. When Y2O3 was added as a sintering aid the sintering temperature was 180$0^{\circ}C$, the maximum values of flexural strength, hardness and fracture toughness were 537MPa, 12.1GPa, 3.7MPa.m1/2, respectively. However, when the sintering temperature was elevated to 190$0^{\circ}C$, maximum values of flexural strength, hardness and fracture toughness were 453MPa, 17.5GPa, 4.9MPa.m1/2, respectively. Improved mechanical properties are assumed to be attributed to the crack deflection by the second phase SiC whisker and whisker pullout mechanism.

  • PDF