• Title/Summary/Keyword: $Al_2O_3-SiC$

Search Result 1,188, Processing Time 0.024 seconds

High-temperature Oxidation of the TiAlCrSiN Film (TiAlCrSiN 박막의 고온 산화 부식)

  • Lee, Dong-Bok;Kim, Min-Jeong;Abro, M.A.;Yadav, P.;Shi, Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.107-107
    • /
    • 2016
  • TiCrAlSiN films were developed in order to improve the high-temperature oxidation resistance, corrosion resistance, and mechanical properties of conventional TiN films that are widely used as hard films to protect and increase the lifetime and performance of cutting tools or die molds. In this study, a nano-multilayered TiAlCrSiN film was deposited by cathodic arc plasma deposition. It displayed relatively good oxidation resistance at $700-900^{\circ}C$, owing to the formation protective oxides of $Al_2O_3$, $Cr_2O_3$, and $SiO_2$, and semiprotective $TiO_2$. At $1000^{\circ}C$, the increased temperature led to the formation of the imperfect oxide scale that consisted primarily of the outer ($TiO_2$,$Al_2O_3$)-mixed scale and inner ($TiO_2$, $Al_2O_3$, $Cr_2O_3$)-mixed scale.

  • PDF

Phase Relations and Microstructure of Comounds in the $Si_3N_4-Al_2O_3-SiO_2$ system at $1700^{\cire}C$ ($Si_3N_4-Al_2O_3-SiO_2$계의 1,$700^{\circ}C$에서 생성하는 화합물의 상관계 및 미구조)

  • Lee, Eey-Jong;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.206-212
    • /
    • 1979
  • The phase relations and microstructure appeared at 1700℃ in a system of Si3N4-Al2O3-SiO2 were studied. The samples were pressurelessly sintered at 1700℃ for 1hr and reheated at 1600℃ for 1hr under nitrogen atmosphere. The compounds formed were identified by X-ray diffraction method and the microstrues were observed by SEM. The stable phases appeared in this system were X-phase, Si2ON2, β'-Si3N4 and Mullite. From the results of those experiments, it was concluded that the X-phase has very close composition to that proposed by G, K. Layden, Si3Al6O12N2. SEM photographs showed that Si2ON2 was a plate phase and X-phase was a rectagular plate phase.

  • PDF

Joining Behavior of YSZ Ceramics to Al2O3-ZrO2-SiO2-R2O and Al2O2-ZrO2-SiO2-La2O3-R2O Glass Systems (Al2O3-ZrO2-SiO2-R2O와 Al2O3-ZrO2-SiO2-La2O3-R2O계 유리와 부분안정화 지르코니아간의 접합거동)

  • Choi, Jinsam;Bae, Won Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.1
    • /
    • pp.19-22
    • /
    • 2015
  • The joining behavior of YSZ ceramics to the glasses used in the $9Al_2O_3-24ZrO_2-51SiO_2-16R_2O$ and $9Al_2O_3-24ZrO_2-51SiO_2-7La_2O_3-9R_2O$ (wt%) glass systems was investigated. The glass transition and softening temperatures were determined to be $430^{\circ}C$ and $760^{\circ}C$, respectively. The behavior of the contact angle was inversely proportional to an increase in the temperature. The Zr element in YSZ acted as a nucleation agent and contributed to the bonding behavior at the interface.

Wear Characterization of $Al/Al_2O_3$ Composites Reinforced with Hybrid of Carbon Fibers and SiC Whiskers (탄소섬유와 SiC 휘스커를 혼합한 $Al/Al_2O_3$ 복합재료의 마멸특성)

  • 봉하동;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.7
    • /
    • pp.1619-1629
    • /
    • 1995
  • The Al/Al$_{2}$O$_{3}$ SiC and Al/Al$_{2}$O$_{3}$/C hybrid metal matrix composites (MMCs) were fabricated by squeeze infiltration method. Uniform distribution of reinforcements were found in the microstructure of metal matrix composites. Mechanical tests were carried out under various test conditions to clearly identify mechanical behavior of MMCs, and the wear mechanism of Al/Al$_{2}$O$_{3}$/(SiC or C) hybrid metal matrix composites were investigated. The tensile strength and hardness of hybrid composites was resulted in increasing compared with those of the unreinforced matrix alloy. Wear resistance was strongly dependent upon kinds of fiber, volume fraction and sliding speed. The wear resistance of metal matrix composites was remarkably improved by the addition of reinforcements. Especially, the wear resistance of the hybrid composites of carbon fibers was more effective than in the composites reinforced with alumina and SiC whiskers of reinforcements. This was due to the effect of carbon fiber on the solid lubrication. Wear mechanisms of hybrid composites were suggested from wear surface analyses. The major wear mechanism of hybrid composites was the abrasive wear at low to intermediate sliding speed, and the melting wear at intermediate to high sliding speed.

Properties and Manufacture of $\beta-SiC-ZrB_2$ Composites Densified by Liquid-Phase Sintering(II) (액상소결에 의한 $\beta-SiC-ZrB_2$ 복합체의 제조와 특성(II))

  • Yoon, Se-Won;Hwang, Chul;Ju, Jin-Young;Shin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.2
    • /
    • pp.92-97
    • /
    • 2000
  • The mechanical and electrical properties of the hot-pressed and annealed $\beta$-SiC+39vol. %ZrB2 electroconductive ceramic composites were investigated by adding 1, 2, 3wt% Al2O3+Y2O3(6:4wt%) of the liquid forming additives. In this microstructures, no reactions were observed between $\beta-SiC$ and ZrB2. The relative density is over 90.8% of the theoretical density and the porosity decreased with increasing Al2O3+Y2O3 contents. Phase analysis of the composites by XRD revealed $\alpha-SiC(6H, 4H)$, ZrB2 and $\beta-SiC$(15R). Flexural srength showed the highest of 315.5MPa for composites added with 3wt% Al2O3+Y2O3 additives as room temperature. Owing to crack deflection and crack bridging of fracture toughness mechanism, the fracture toughness showed 5.5MPa.m1/2 and 5.3MPa.m1/2 for composites added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively at room temperature. The area fraction of the elongated SiC grain in the etched surface of sample showed 65% and 65.1% for composite added with 2wt% and 3wt% Al2O3+Y2O3 additives respectively. The electrical resistivity at room temperature. The electrical resistivity of the composites wall all positive temperature coefficient(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Passivation property of Al2O3 thin film for the application of n-type crystalline Si solar cells (N-type 결정질 실리콘 태양전지 응용을 위한 Al2O3 박막의 패시베이션 특성 연구)

  • Jeong, Myung-Il;Choi, Chel-Jong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.3
    • /
    • pp.106-110
    • /
    • 2014
  • The passivation property of $Al_2O_3$ thin film formed using atomic layer deposition (ALD) for the application of crystalline Si solar cells was investigated using microwave photoconductance decay (${\mu}$-PCD). After post-annealing at $400^{\circ}C$ for 5 min, $Al_2O_3$ thin film exhibited the structural stability having amorphous nature without the interfacial reaction between $Al_2O_3$ and Si. The post-annealing at $400^{\circ}C$ for 5 min led to an increase in the relative effective lifetime of $Al_2O_3$ thin film. This could be associated with the field effective passivation combined with surface passivation of textured Si. The capacitance-voltage (C-V) characteristics of the metal-oxide-semiconductor (MOS) with $Al_2O_3$ thin film post-annealed at $400^{\circ}C$ for 5 min was carried out to evaluate the negative fixed charge of $Al_2O_3$ thin film. From the relationship between flatband voltage ($V_{FB}$) and equivalent oxide thickness (EOT), which were extracted from C-V characteristics, the negative fixed charge of $Al_2O_3$ thin film was calculated to be $2.5{\times}10^{12}cm^{-2}$, of which value was applicable to the passivation layer of n-type crystalline Si solar cells.

Characteristics of $\textrm{Al}_2\textrm{O}_3$-SiC Composite Powder Prepared by SHS Process and its Sintering Behavior (SHS법에 의한 $\textrm{Al}_2\textrm{O}_3$-SiC 복합분말 제조 및 소결특성)

  • An, Chang-Yeong;Yun, Gi-Seok;Jeong, Jung-Chae;Won, Chang-Wan
    • Korean Journal of Materials Research
    • /
    • v.9 no.8
    • /
    • pp.817-824
    • /
    • 1999
  • The $Al_2$$O_3$-SiC composite powder was prepared by Self-propagating High-Temperature Synthesis(SHS) process using $SiO_2$Al and C powders as raw material. The effects of the molar ratio in raw material, compaction pressure, initial temperature of reactants on the products and combustion process were studied. Self-propagating high temperature synthesis of $SiO_2$/Al/C system should be preheated above $400^{\circ}C$ owing to the low combustion temperature. As the result of the combustion reaction, the purity of final product became better than that of reactants. In this system, the optimum molar ratio of $SiO_2$:Al:C was 3.0:4.0:6.0. The free carbon was removed by roasting at $650^{\circ}C$ for 30min. In this study, pressureless sintering was very dffective both for controlling the disintegration of specimen with powder bed and for obtaining dense sintered-body at $1700^{\circ}C$. The sintered-body produced with hot-pressing was about 98% of the theoretical relative density.

  • PDF

Effect of $Al_2O_3$ and $Fe_2O_3$ Tribological Properties of Reaction Bonded SiC (반응 소결 SiC 소결체의 마찰마모특성에 미치는 첨가제 $Al_2O_3$$Fe_2O_3$ 의 영향)

  • 백용혁;박홍균
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.9
    • /
    • pp.1069-1075
    • /
    • 1994
  • When ceramics are used as the parts of an engine and a machine, the tribological properties are very important. For the preparation of the resistance material for wear applications by the method of Reaction-Bonded Sintering, metal silicon and carbon black are mixed up into SiC powder, and Al2O3 and Fe2O3 are put as an additive. As the general properties, the bending strength and water absortion are measured in the normal temperature and the phase changies are investigated with XRD. The property of the resistance for wear applications is measured with the amount of friction and wear, friction coefficient and maximum asperties. And, the surface of wear is observed with SEM. With the results of this study, the optimal mol ratio of Si : C and the suitable quantity of the mixture of SiC are 7 : 3 and 40 wt%, respectively. In the case of the addition of Al2O3 (2 wt%), the resistance for friction and wear applications is prominent. The bending strength showed the highest peak when Al2O3 (4 wt%) and Fe2O3 (4 wt%) were added. The properties of friction and wear were related with the propagation velocity of crack rather than the bending strength.

  • PDF

Mechanical, Electrical Properties and Manufacture of the $\beta$-SiC-$ZrB_2$ Electroconductive Ceramic Composites by Pressureless Sintering (무가압소결한 $\beta$-SiC-$ZrB_2$계 도전성 복합체의 제조 및 기계적, 전기적 특성)

  • Shin, Yong-Deok;Kwon, Ju-Sung
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.2
    • /
    • pp.98-103
    • /
    • 1999
  • The effect of $Al_2O_3$ additives to $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composites by pressureless sintering on microstructural, mechanical and electrical properties were investigated. The $\beta-SiC+39vol.%ZrB_2$ ceramic composites were pressureless sintered by adding 4, 8, 12wt.% $Al_2O_3$ powder as a liquid forming additives at $1950^{\cire}C$ for 1h. Phase analysis of composites by XRD revealed mostly of $\alpha-SiC(6H), ZrB_2$ and weakly $\alpha-SiC(4H), \beta-SiC (15R)$ phase. The relative density of composites was lowered by gaseous products of the result of reaction between \beta-SiC and Al_2O_3$, therefore, porosity was increased with increasing $Al_2O_3$ contents, and showed the maximum value of 1.4197MPa.$m^{1/2}$ for composite with 4wt.% $Al_2O_3$ additives. The electrical resistivity of $\beta-SiC+39vol.%ZrB_2$ electroconductive ceramic composite was increased with increasing $Al_2O_3$ contents, and showed positive temperature coefficient resistance (PTCR) in the temperature range of $25^{\cire}C$ to $700^{\cire}C$.

  • PDF

Manufacture and Properties of $SiC-TiB_2$Electroconductive Ceramic Composites for Pressureless Sintering (상압소결을 위한 $SiC-TiB_2$ 전도성 세라믹 복합체의 제조와 특성)

  • Ju, Jin-Yeong;Sin, Yong-Deok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.500-503
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and pressureless annealed SiC+39vol.%$TiB_2$electroconductive ceramic composites were investigated as a function of the liquid additives of $Al_2O_3+Y_2O_3$. The result of phase analysis for the SiC+39vol.%$TiB_2$composites by XRD revealed $\alpha$-SiC(6H), $TiB_2$, and $YAG(Al_5Y_3O_{12})4 crystal phase. The relative density of SiC+39vol.%$TiB_2$ composites was increased with increased $Al_2O_3+Y_2O_3$. contents. The fracture toughness showed the highest value of $7.8 MPa.m^{1/2}$ for composites added with 12 wt % $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $7.3\times10_{-4}\Omega.cm\; and\; 3.8\times10_{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$. additives at room temperature. The electrical resistivity of the SiC+39vol.%$TiB_2$composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from $25^{\circ}C\; to\; 700^{\circ}C$.

  • PDF