• Title/Summary/Keyword: $Al_2O_3/Al$ composites

Search Result 450, Processing Time 0.026 seconds

Properties of the $\beta$-SiC-$ZrB_2$ Composites with $Al_{2}O_{3}+Y_{2}O_{3}$ additives ($Al_{2}O_{3}+Y_{2}O_{3}$를 첨가한 $\beta$-SiC-$ZrB_2$ 복합체의 특성)

  • Shin, Yong-Deok;Ju, Jin-Young
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.853-855
    • /
    • 1998
  • The electrical resistivity and mechanical properties of the hot-pressed and annealed ${\beta}$-SiC+39vol.%$ZrB_2$ electroconductive ceramic composites were investigated as a function of the liquid forming additives of $Al_{2}O_{3}+Y_{2}O_{3}$(6:4wt%). In this microstructures. no reactions were observed between $\beta$-SiC and $ZrB_2$, and the relative density is over 97.6% of the theoretical density. Phase analysis of composites by XRD revealed mostly of a $\alpha$-SiC(6H, 4H), $ZrB_2$ and weakly $\beta$-SiC(15R) phase. The fracture toughness decreased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents and showed the highest for composite added with 4wt% $Al_{2}O_{3}+Y_{2}O_{3}$ additives. The electrical resistivity increased with increased $Al_{2}O_{3}+Y_{2}O_{3}$ contents because of the increasing tendency of pore formation according to amount of liquid forming additives $Al_{2}O_{3}+Y_{2}O_{3}$. The electrical resistivity of composites is all positive temperature coefficient resistance(PTCR) against temperature up to $700^{\circ}C$.

  • PDF

Pressureless Sintered Nitride Composites in the AlN-Al2O3 System (AlN-Al2O3 계에서의 상압소결 질화물복합체)

  • Kim, Young Woo;Kim, Kyu Heon;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.498-504
    • /
    • 2014
  • Particulate nitride composites have been fabricated by sintering the compacted powder of AlN and 5 - 64.3 mol% $Al_2O_3$, with a small addition of $Y_2O_3$ ($Y_2O_3$/AlN, 1 wt%), in 1-atm nitrogen gas at $1650-1900^{\circ}C$. The composites were characterized in terms of sintering behavior, phase relations, microstructure and thermal shock resistance. AlN, 27R AlN pseudopolytype, and alminium oxynitride (AlON, $5AlN{\cdot}9Al_2O_3$) were found to existin the sintered material. Regardless of batch composition, the AlN-$Al_2O_3$ powder compacts exhibited similar sintering behavior; however, the degree of shrinkage commonly increased with increasing $Al_2O_3$ content, consequently giving high sintered bulk density. By increasing the $Al_2O_3$ addition up to ${\geq}50 mol%$, the matrix phase in the sintered material was converted from AlN or 27R to AlON. Above $1850^{\circ}C$, a liquid phase was formed by the reaction of $Al_2O_3$ with AlN, aided by $Y_2O_3$ and mainly existed at the grain boundaries of AlON. Thermal shock resistance was superior in the sintered composite consisting of AlON with dispersed AlN or AlN matrix phase.

Preparation and Characteristics of Ceramic Composite Powders Coated with $Al_2O_3$: (III) Composite Powders of $Al_2O_3-ZrO_2$ ($Al_2O_3$로 피복시킨 세라믹 복합분체의 제조 및 특성: (III) $Al_2O_3-ZrO_2$ 복합분체)

  • 현상훈;이지현;송원선
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.8
    • /
    • pp.667-673
    • /
    • 1992
  • The alumina-zirconia composite powders of core particle ZrO2 coated with Al2O3 were prepared by the hydrolysis-deposition of the mixed aluminum salt solution of Al2(SO4)3-Al(NO3)3-Urea. The effects of hydrolysis reaction and coating parameters on characteristics of coated powders and composites were also investigated. The degree of coating could be estimated from the ratio of tetra-/mono-ZrO2 present at the room temperature after heat-treating coated powders at 120$0^{\circ}C$ and the result of TEM observations. When the content of ZrO2 in the dispersed coating system, the coating time, and the volume ratio of water/solution were 50 mg/g, 180 min, and 5, respectively the coating efficiency was maximum (the ratio of tetra-/mono-ZrO2 was 87/13). The relative densities of coated Al2O3-ZrO2 composites sintered at 1$650^{\circ}C$ for 4 hrs were about 91~98% and the maximum ratio of tetra-/mono-ZrO2 in Al2O3-20wt% ZrO2 composites was 62/38.

  • PDF

Wear Properties of Thermal Sprayed Al-based Metal Matrix Composites Against Different Counterparts (용사법에 의해 제조된 $Al/Al_2O_3$ 복합재료의 상대재에 따른 마모특성)

  • Kim, K.T.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.60-65
    • /
    • 2008
  • This study aims at investigating the wear properties of thermally sprayed $Al/Al_2O_3$ metal matrix composite(MMC) coating against different counterparts. $Al/Al_2O_3$ MMC coatings were fabricated using a flame spray system on an Al 6061 substrate. Dry sliding wear tests were performed using the sliding speeds of 0.2m/s and the applied loads of 1 and 2 N. AISI 52100, $Al_2O_3$, $Si_3N_4\;and\;ZrO_2$ balls(diameter: 8mm) were used as counterpart materials. Wear properties of $Al/Al_2O_3$ MMC coatings were analyzed using a scanning electron microscope(SEM) and energy dispersive X-ray spectroscopy (EDX). It was revealed that wear properties of $Al/Al_2O_3$ composite coatings were much influenced by counterpart materials. In the case of AISI 52100 used as counterparts, the wear rate of composites coating layer increased according to the increase of the applied load. On the contrary, in the case of ceramics used as counterparts, the wear rate of composites coating layer decreased according to the increase of the applied load.

  • PDF

Development of $Al_2TiO_5$-Clay Composites for Infrared Radiator ($Al_2TiO_5$-점토 복합체를 이용한 적외선 방사체의 개발)

  • 신대용;한상목
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.122-127
    • /
    • 2000
  • The thermal expansion, thermal stability, mechanical strength and infrared radiative property of Al2TiO5-clay composites, prepared from synthesized Al2TiO5 and clay, were investigated to develop a material for far infrared radiators. The emittance of composites containing 10~50 wt% clay, heated at 1,20$0^{\circ}C$ for 3 h, increased with increasing clay content and emittance was about 0.3 and 0.92 in the ranges of 3,400~2,500 cm-1 and 2,500~400cm-1, respectively. The bulk density and bending strength of the Al2TiO5-clay composites increased with increasing clay content. 50 wt% Al2TiO5-50 wt% clay composite, heat-treated at 1,20$0^{\circ}C$, had an adequate strength for infrared radiators; 80 MPa. The degree of thermal expansion hysteresis decreased with increasing clay content and the mean thermal expansion coefficient increased with increasing clay content. The thermal expansion coefficient of 50 wt% Al2TiO5-50 wt% clay composite heated at 1,20$0^{\circ}C$ was 5.78$\times$10-6/$^{\circ}C$.

  • PDF

Thermal Shock Resistance of $80Al_2O_3-20Al$ Composites: Experiments and Finite Element Analysis ($80Al_2O_3-20Al$ 복합재료의 내열충격성: 실험과 유한요소 해석)

  • 김일수;신병철
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.3
    • /
    • pp.201-204
    • /
    • 2000
  • Thermal shock resistance of 80Al2O3-20Al composite and monolithic alumina ceramics was compared. Fracture strength was measured by using a 4-pont bending test after quenching. Thermal stresses of the ceramics and ceramic-metal composites were calculated using a finite element analysis. The bending strength of the Al2O3 ceramics decreased catastropically after quenching from 20$0^{\circ}C$ to $0^{\circ}C$. The bending strength of the composite also decreased after quenching from 200~2$25^{\circ}C$, but the strength reduction was much smaller than for Al2O3. The maximum thermal stress occured in the monolithic alumina ceramics when exposed to a temperature difference of 20$0^{\circ}C$ was 0.758 GPa. The same amount of stress occured in the Al2O3-Al composite when the temperature difference of 205$^{\circ}C$ used.

  • PDF

Cyclic Deformation and Fatigue Behavior of Short Fiber Reinforced Metal Matrix Composites (단섬유보강 금속복합재료의 반복적 변형 및 피로특성)

  • 양유창;송정일;한경섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1422-1430
    • /
    • 1995
  • Al6061 alloy reinforced with 15 volume% of Saffil fibers was fabricated by squeeze infiltration method. Uniform distribution of reinforcements and good bondings between reinforcements and matrix alloy were found in the microstructure of composites. Comparing with A16061 matrix alloy, tensile strength and elastic modulus of $Al_{2}$O$_{3}$/Al composites were increased up to 26% and 31%, respectively. Cyclic deformation and fatigue behavior of $Al_{2}$O$_{3}$/Al metal matrix composites were studied. The specimens were cycled using tension-tension(R=0.1) loading and under load controlled fatigue test. Cyclic stress-displacement curve through fatigue test was obtained. Fatigue strength of $Al_{2}$O$_{3}$/Al composites was about 200 MPa, i.e.0.55 of applied stress level(q). During fatigue test, $Al_{2}$O$_{3}$/Al composites displayed cyclic hardening at all applied stress levels. The most of resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. Displacement-to-failure of the fatigue test was smaller than that of the tensile test because of accumulative damage by cumulative plastic deformation.

Microstructure and Properties of Nano-Sized Ni-Fe Alloy Dispersed Al2O3 Composites (Ni-Fe 합금입자 분산 Al2O3 나노복합재료의 미세조직 및 특성)

  • 남궁석;정재영;오승탁;이재성;이홍재;정영근
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.161-166
    • /
    • 2002
  • Processing and properties of $Al_2O_3$ composites with Ni-Fe content of 10 and 15 wt% were investigated. Homogeneous powder mixtures of $Al_2O_3$/Ni-Fe alloy were prepared by the solution-chemistry route using $Al_2O_3$, $Ni(NO_3)_2{\cdot}6H_2O$ and $Fe(NO_3)_3{\cdot}9H_2O$ powders. Microstructural observation of composite powder revealed that Ni-Fe alloy particles with a size of 20nm were homogeneously dispersed on $Al_2O_3$ powder surfaces. Hot-pressed composites showed enhanced fracture toughness and magnetic response. The properties are discussed based on the observed microstructural characteristics.

Mechanical Properties and Failure Analysis of $Al_2O_3/ZrO_2$ Composites ($Al_2O_3/ZrO_2$복합체의 기계적 물성 및 파괴거동)

  • Hong, Gigon-Hong;Han, Dong-Bin
    • Korean Journal of Materials Research
    • /
    • v.2 no.3
    • /
    • pp.172-179
    • /
    • 1992
  • $Al_2O_3/ZrO_2$ composites were fabricated by pressureless sintering from commercial powders and/or nano composite powder of $Al_2O_3/ZrO_2$. The Properties of the composites such as density, strength, hardness and fracture toughness were evaluated. Microstructures and fracture surfaces ware also examined. The flexural strength remains unchanged(~640 MPa) as long as the content of commercial powders is not extreamly high, and depends on microstructures of the composites. Fracture toughness(4.3-5.3 $Mpa{\cdot}m^{1/2}$) increases with increasing content of commercial powders. Fractography shows that failure-initiating sources are 1)surface flaws resulting from machining damage, 2)crack-shaped voids formed due to $ZrO_2$ agglomeration, and 3)surface separation caused by inhomogeneous blending and by sinterability difference between nato composite powder and commercial powders of $Al_2O_3/ZrO_2$. Failure mode of the composites was mainly transgranular.

  • PDF

Properties of ${\beta}$-SIC TiB$_2$ Electroconductive Ceramic Composites Densified by Liquid-Phase Sintering(Ⅱ) (液狀 燒結에 의한 ${\beta}$-SIC TiB$_2$系 導電性 複合體의 特性(Ⅱ))

  • Shin, Yong-Deok;Yim Seung-Hyuk;Song Joon-Tae
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.6
    • /
    • pp.263-270
    • /
    • 2001
  • The mechanical and electrical properties of the hot-pressed and annealed ${\beta}-SiC-TiB_2$,/TEX> electroconductive ceramic composites were investigated as function as functions of the liquid forming additives of $Al_2O_3+Y_2O_3$. The result of phase analysis of composites by XRD revealed ${\alpha}$-SiC(6H), $TiB_2$,/TEX>, and YAG($Al_5Y_3O_{12}$) crystal phase. The relative density and the mechanical properties of composites were increased with increasing $Al_2O_3+Y_2O_3$ contents in pressureless annealing method because YAG of reaction between $Al_2O_3$ was increased. The flexural strength showed the highest value of 458.9 MPa for composites added with 4 wt% $Al_2O_3+Y_2O_3$ additives in pressed annealing method at room temperature. Owing to crack deflection, crack bridging, phase transition and YAG of fracture toughness mechanism, the fracture toughness showed 7.1 MPa ${\cdot}\;m^{1/2}$ for composites added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature. The electrical resistivity and the resistance temperature coefficient showed the lowest value of $6.0{\times}10^{-4}\;{\Omega}\;{\cdot}\;cm(25\'^{\circ}C}$ and $3.0{\times}10^{-3}/^{\circ}C$ for composite added with 12 wt% $Al_2O_3+Y_2O_3$ additives in pressureless annealing method at room temperature, respectively. The electrical resistivity of the composites was all positive temperature coefficient resistance(PTCR) in the temperature ranges from 25 $^{\circ}C$ to 700 $^{\circ}C$.

  • PDF