• 제목/요약/키워드: $Al_2O_3$ oxide film

검색결과 267건 처리시간 0.029초

Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성 (Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.

원자층 증착법을 이용한 ZnO:Al 박막의 특성 (Characteristics of Atomic Layer-Controlled ZnO:Al Films by Atomic Layer Deposition)

  • 오병윤;백성호;김재현;이희준;강영구;서대식
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.40-40
    • /
    • 2010
  • Structural, electrical, and optical properties of atomic layer-controlled AI-doped ZnO (ZnO:Al) films grown on glass by atomic layer deposition (ALD) were characterized with various $Al_2O_3$ film contents for use as transparent electrodes. Unlike films made using sputtering methods, the diffraction peak position of the films grown by ALD based on alternate self-limiting surface chemical reactions moved progressively to a wider angle (red shift) with increasing $Al_2O_3$ film content, which seems to be evidence of Zn substitution in the film by layer-by-layer growth. By adjusting the $Al_2O_3$ film content, the electrical resistivity of ZnO:Al film with the $Al_2O_3$ film content of 2.96% reached the lowest electrical resistivity of $9.80{\times}10^{-4}\Omega{\cdot}cm$, in which the carrier mobility, carrier concentration, and optical transmittance were $11.20\;cm^2V^{-1}s^{-1}$, $5.69{\times}10^{20}\;cm^{-3}$, and 94.23%, respectively. Moreover, the estimated figure of merit value for the transparent conductive oxide applications from our best sample was $7.7\;m{\Omega}^{-1}$.

  • PDF

Atomic Layer Deposition of Al2O3 Thin Films Using Dimethyl Aluminum sec-Butoxide and H2O Molecules

  • Jang, Byeonghyeon;Kim, Soo-Hyun
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.430-437
    • /
    • 2016
  • Aluminum oxide ($Al_2O_3$) thin films were grown by atomic layer deposition (ALD) using a new Al metalorganic precursor, dimethyl aluminum sec-butoxide ($C_{12}H_{30}Al_2O_2$), and water vapor ($H_2O$) as the reactant at deposition temperatures ranging from 150 to $300^{\circ}C$. The ALD process showed typical self-limited film growth with precursor and reactant pulsing time at $250^{\circ}C$; the growth rate was 0.095 nm/cycle, with no incubation cycle. This is relatively lower and more controllable than the growth rate in the typical $ALD-Al_2O_3$ process, which uses trimethyl aluminum (TMA) and shows a growth rate of 0.11 nm/cycle. The as-deposited $ALD-Al_2O_3$ film was amorphous; X-ray diffraction and transmission electron microscopy confirmed that its amorphous state was maintained even after annealing at $1000^{\circ}C$. The refractive index of the $ALD-Al_2O_3$ films ranged from 1.45 to 1.67; these values were dependent on the deposition temperature. X-ray photoelectron spectroscopy showed that the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ were stoichiometric, with no carbon impurity. The step coverage of the $ALD-Al_2O_3$ film was perfect, at approximately 100%, at the dual trench structure, with an aspect ratio of approximately 6.3 (top opening size of 40 nm). With capacitance-voltage measurements of the $Al/ALD-Al_2O_3/p-Si$ structure, the dielectric constant of the $ALD-Al_2O_3$ films deposited at $250^{\circ}C$ was determined to be ~8.1, with a leakage current density on the order of $10^{-8}A/cm^2$ at 1 V.

활성화 반응 증발법에 의한 Al2O3 박막 형성 (Formation of Al2O3 Film by Activated Reactive Evaporation Method)

  • 박용근;최재하
    • 열처리공학회지
    • /
    • 제14권5호
    • /
    • pp.292-296
    • /
    • 2001
  • In this work, an ultra-high vacuum activated reactive evaporation equipment was built. With reaction of Al and oxygen plasma, $Al_2O_3$ was deposited on the surface of etched Al foil. The chamber was evacuated down to $2{\times}10^{-7}$ torr initially. The Ar and $O_2$ gas introduced into the chamber to maintain $5{\times}10^{-5}$ torr during deposition. Ar gas prevents recombining of the ionized oxygen. Evaporation was maintained by electron beam evaporator continuously. Heating filament and electrode were used in order to generate plasma. The substrate bias of -300V was introduced to accelerate deposition of evaporated Al atoms. The composition and morphology of deposited $Al_2O_3$ films were analyzed by x-ray photoelectron spectroscopy(XPS) and atomic force microscopy (AFM), respectively. The Al oxide was formed on the surface of etched Al foil. According to AFM results, the surface morphology of $Al_2O_3$ film indicates uniform feature. Dielectric characteristic was measured as a function of frequency. Measured withstanding voltage and capacitance were 52V and $24{\mu}F/cm^2$, respectively. The obtained $Al_2O_3$ film shows clean condition without contaminants, which could be adapted to capacitor production.

  • PDF

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors

  • Huh, Jae-Eun;Park, Jintaek;Lee, Junhee;Lee, Sung-Eun;Lee, Jinwon;Lim, Keon-Hee;Kim, Youn Sang
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.117-123
    • /
    • 2018
  • Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.

RF 마그네트론 스퍼터링으로 증착된 AlOx 봉지 박막을 갖는 OLED 소자의 수명 특성 (Life Time Characteristics of OLED Device with AlOx Passivation Film Deposited by RF Magnetron Sputtering)

  • 안오진;주성후;양재웅
    • 한국표면공학회지
    • /
    • 제43권6호
    • /
    • pp.272-277
    • /
    • 2010
  • We investigated the life time characteristics of OLED device with aluminium oxide ($AlO_x$) passivation film on glass substrate and polyethylene terephthalate (PET) substrate by RF magnetron sputtering for the transparent barrier film applied to flexible OLED device. Basic buffer layer was determined as $Alq_3$(500 nm)-LiF(300 nm)-Al(1200 nm), and the most suitable aluminium oxide ($AlO_x$) film have been formed when the partial volume ratio of oxygen was 20% and the sputtering power was 100 watt and the minimum thickness of buffer was $2\;{\mu}m$. $AlO_x$/epoxy hybrid film was also used as a effective passivation layer for the purpose of improving life time characteristics of OLED devices with the glass substrate and the plastic substrate. Besides, the simultaneous deposition of $AlO_x$/epoxy film on back side of PET could result in better improvement of life time.

결정질 실리콘 태양전지를 위한 PA-ALD Al2O3 막의 패시베이션 효과 향상 연구 (Improvement on the Passivation Effect of PA-ALD Al2O3 Layer Deposited by PA-ALD in Crystalline Silicon Solar Cells)

  • 송세영;강민구;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.754-759
    • /
    • 2013
  • Aluminum oxide($Al_2O_3$) film deposited by atomic layer deposition (ALD) is known to supply excellent surface passivation properties on crystalline Si surfaces. Since $Al_2O_3$ has fixed negative charge, it forms effective surface passivation by field effect passivation on the rear side in p-type silicon solar cell. However, $Al_2O_3$ layer formed by ALD process needs very long process time, which is not applicable in mass production of silicon solar cells. In this paper, plasma-assisted ALD(PA-ALD) was applied to form $Al_2O_3$ to reduce the process time. $Al_2O_3$ synthesized by ALD on c-Si (100) wafers contains a very thin interfacial $SiO_2$ layer, which was confirmed by FTIR and TEM. To improve passivation quality of $Al_2O_3$ layer, the deposition temperature was changed in range of $150{\sim}350^{\circ}C$, then the annealing temperature and time were varied. As a result, the silicon wafer with aluminum oxide film formed in $250^{\circ}C$, $400^{\circ}C$ and 10 min for the deposition temperature, the annealing temperature and time, respectively, showed the best lifetime of 1.6ms. We also observed blistering with nanometer size during firing of $Al_2O_3$ deposited on p-type silicon.

Optical and electrical property of Indium-doped ZnO (IZO) grown by Atomic Layer Deposition (ALD) using Et2InN(TMS)2 as In precursor and H2O oxidant

  • 조영준;장효식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.421.1-421.1
    • /
    • 2016
  • We studied indium-doped zinc oxide (IZO) film grown by atomic layer deposition (ALD) as transparent conductive oxide (TCO). A variety of TCO layer, such as ZnO:Al (AZO), InSnO2(ITO), Zn (O,S) etc, has been grown by various method, such as ALD, chemical vapor deposition (CVD), sputtering, laser ablation, sol-gel technique, etc. Among many deposition methods, ALD has various advantages such as uniformity of film thickness, film composition, conformality, and low temperature deposition, as compared with other techniques. In this study, we deposited indium-doped zinc oxide thin films using diethyl[bis(trimethylsilyl)amido]indium [Et2InN(TMS)2] as indium precursor, DEZn as zinc precursor and H2O as oxidant for ALD and investigated the optical and electrical properties of IZO films. As an alternative, this liquid In precursor would has several advantages in indium oxide thin-film processes by ALD, especially for low resistance indium oxide thin film and high deposition rate as compared to InCp, InCl3, TMIn precursors etc. We found out that Indium oxide films grown by Et2InN(TMS)2 and H2O precursor show ALD growth mode and ALD growth window. We also found out the different growth rate of Indium oxide as the substrate and investigated the effect of the substrate on Indium oxide growth.

  • PDF

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variation substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering (FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of O$_2$ gas and substrate temperature. When the of gas rate of 0.3 and substrate temperature 200$^{\circ}C$ , ZnO:Al thin film had strongly oriented c-axis and lower resistivity(<10$\^$-4/Ω-cm).

  • PDF

항온항습 환경에 노출된 Al2O3 ALD 박막의 특성 평가 (Characteristics Evaluation of Al2O3 ALD Thin Film Exposed to Constant Temperature and Humidity Environment)

  • 김현우;송태민;이형준;전용민;권정현
    • 반도체디스플레이기술학회지
    • /
    • 제21권2호
    • /
    • pp.11-14
    • /
    • 2022
  • In this work, we evaluated the Al2O3 film, which was deposited by atomic layer deposition, degraded by exposure to harsh environments. The Al2O3 films deposited by atomic layer deposition have long been used as a gas diffusion barrier that satisfies barrier requirements for device reliability. To investigate the barrier and mechanical performance of the Al2O3 film with increasing temperature and relative humidity, the properties of the degraded Al2O3 film exposed to the harsh environment were evaluated using electrical calcium test and tensile test. As a result, the water vapor transmission rate of Al2O3 films stored in harsh environments has fallen to a level that is difficult to utilize as a barrier film. Through water vapor transmission rate measurements, it can be seen that the water vapor transmission rate changes can be significant, and the environment-induced degradation is fatal to the Al2O3 thin films. In addition, the surface roughness and porosity of the degraded Al2O3 are significantly increased as the environment becomes severer. the degradation of elongation is caused by the stress concentration at valleys of rough surface and pores generated by the harsh environment. Becaused the harsh envronment-induced degradation convert amorphous Al2O3 to crystalline structure, these encapsulation properties of the Al2O3 film was easily degraded.