• 제목/요약/키워드: $Al_2O_3$ nanocomposites

검색결과 63건 처리시간 0.029초

$Al_2O_3/SiC$ 나노복합체의 상압소결 및 역학적 특성에 미치는 볼밀분쇄와 소결온도의 영향 (The Effect of Ball Milling and Sintering Temperatures on the Sintering Behaviors and Mechanical Properties of $Al_2O_3/SiC$ Nanocomposites)

  • 류정호;나석호;이재형;조성재
    • 한국세라믹학회지
    • /
    • 제34권6호
    • /
    • pp.668-676
    • /
    • 1997
  • Al2O3/SiC nanocomposites are fabricated through intensive ball milling to mix fine SiC particles uniformly with the Al2O3 powder. Another role of milling is to reduce particle sizes by crushing particles as well as agglomerates. However, balls are worn during ball milling and the sample powder mixtures pick up to weight loss of the balls. In this study, pressureless sintering was performed to obtain Al2O3/SiC nanocomposites. It was found that the wear rate of zirconia balls during milling was considerable, and the zirconia addition after even a few hours of ball milling could increase the sintering rates of the nanocomposites significantly. Thus, addition of ZrO2 changed the sintering behaviors as well as mechanical properties of Al2O3/SiC nanocomposites.

  • PDF

Cu 첨가량이 Al2O3/Cu 나노복합재료의 미세조직과 기계적 성질에 미치는 영향 (Effect of Cu content on Microstructure and Mechanical Properties of Al2O3/Cu Nanocomposites)

  • 오승탁;윤세중
    • 한국분말재료학회지
    • /
    • 제13권1호
    • /
    • pp.33-38
    • /
    • 2006
  • The effect of Cu content on microstructure and mechanical properties of nano-sized Cu dispersed $Al_2O_3(Al_2O_3/Cu)$ nanocomposites was investigated. The nanocomposites with Cu content of 2.5 to 10 vol% were prepared by reduction and hot-pressing of $Al_2O_3/CuO$ powder mixtures. The nanocomposites with Cu content of 2.5 and 5vol% exhibited the maximum fracture strength of 820MPa and enhanced toughness compared with monolithic $Al_2O_3$. The strengthening was mainly attributed to the refinement of $Al_2O_3$ matrix grains. The toughening mechanism was discussed by the observed microstructural feature based on crack bridging.

나노크기 금속입자가 분산된 Al2O3 나노복합재료의 제조 및 마모거동 (Fabrication and Wear Behavior of Nano-sized Metal Particle Dispersed Al2O3 Nanocomposites)

  • 오승탁;윤세중;정영근
    • 한국재료학회지
    • /
    • 제15권8호
    • /
    • pp.503-507
    • /
    • 2005
  • Microstructure and wear behavior of A1203-based nanocomposites with Cu and Ni-Co dispersions were investigated. $Al_2O_3/Cu$ and $Al_2O_3/Ni-Co$ nanocomposites were fabricated by hydrogen reduction and sintering method using metal oxide and metal nitrates. The nanocomposites showed increased mechanical properties compared with monolithic $Al_2O_3$. In particular, high toughness and hardness were measured for the $Al_2O_3/Ni-Co$ nanocomposite consolidated by spark plasma sintering. A minimum value of wear coefficient comparable to the monolithic $Al_2O_3$ was obtained for $Al_2O_3/Ni-Co$ nanocomposite. Wear behavior is discussed in terms of microstructure and mechanical properties of nanocomposites

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • 한국결정성장학회지
    • /
    • 제12권2호
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.

Processing of Nano-Sized Metal Alloy Dispersed $Al_2O_3$ Nanocomposites

  • Oh, Sung-Tag;Seok Namkung;Lee, Jai-Sung;Kim, Hyoung-Seop;Tohru Sekino
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.157-162
    • /
    • 2001
  • An optimum route to fabricate the ferrous alloy dispersed $Al_2O_3$ nanocomposites such as $Al_2O_3$/Fe-Ni and $Al_2O_3$/Fe-Co with sound microstructure and desired properties was investigated. The composites were fabricated by the sintering of powder mixtures of $Al_2O_3$ and nano-sized ferrous alloy, in which the alloy was prepared by solution-chemistry routes using metal nitrates powders and a subsequent hydorgen reduction process. Microstructural observation of reduced powder mixture revealed that the Fe-Ni or Fe-Co alloy particles of about 20 nm in size homogeneously surrounded $Al_2O_3$, forming nanocomposite powder. The sintered $Al_2O_3$/Fe-Ni composite showed the formation of Fe$Al_2O_4$ phase, while the reaction phases were not observed in $Al_2O_3$/Fe-Co composite. Hot-pressed $Al_2O_3$/Fe-Ni composite showed improved mechanical properties and magnetic response. The properties are discussed in terms of microstructural characteristics such as the distribution and size of alloy particles.

  • PDF

상압소결법으로 제조한 Cu 입자 분산 Al2O3 나노복합재료의 미세조직 및 특성 (Microstructure and Properties of Cu Dispersed Al2O3 Nanocomposites Prepared by Pressureless Sintering)

  • 이경환;오승탁
    • 한국분말재료학회지
    • /
    • 제16권4호
    • /
    • pp.280-284
    • /
    • 2009
  • The pressureless sintering behavior of $Al_2O_3$/Cu powder mixtures, prepared from $Al_2O_3$/CuO and $Al_2O_3$/Cu-nitrate, has been investigated. Microstructural observation revealed that $Al_2O_3$ powders with nano-sized Cu particles could be synthesized by hydrogen reduction method. The specimens, pressureless-sintered at $1400^{\circ}C$ for 4 min using infrared heating furnace with the heating rate of $200^{\circ}C$/min, showed the relative density of above 90%. Maximum hardness of 16.1 GPa was obtained in $Al_2O_3$/MgO/Cu nanocomposites. The nanocomposites exhibited the enhanced fracture toughness of 4.3-5.7 $MPa{\cdot}m^{1/2}$, compared with monolithic $Al_2O_3$. The mechanical properties were discussed in terms of microstructural characteristics.

상압소결에 의한 Al2O3/Fe-Ni 나노복합재료의 제조 및 자기적 특징 (Fabrication of Al2O3/Fe-Ni Nanocomposites by Pressureless Sintering and their Magnetic Properties)

  • 이홍재;정영근;남궁석;오승탁;이재성
    • 한국세라믹학회지
    • /
    • 제39권8호
    • /
    • pp.769-774
    • /
    • 2002
  • 금속 산화물 상태으 혼합분말을 수소 환원하여 $Al_2O_3$ 분말 표면에 20 nm 크기의 Fe-Ni 합금이 균일하게 분산된 복합분말을 합성하였다. 상압소결을 이용하여 제조한 $Al_2O_3$/Fe-Ni 나노복합재료는 전 소결 온도 범위에서 단지 $Al_2O_3$${gamma}$-Fe-Ni 상만으로 구성되어 있었고, $1350^{\circ}C$ 이상의 소결 온도에서 98% 이상의 치밀화를 이루었다. 최대 파괴강도와 파괴인성은 각각 574 MPa과 3.9 MP$a{\cdot}m1/2$로서 동일한 소결 조건의 순수 $Al_2O_3$ 보다 약 20% 증가하였다. 나노복합재료는 강자성 거동을 보였으며 분산상의 평균 입자 크기가 감소함에 따라 증가된 보자력 값을 나타내었다.

Effect of Powder Synthesis Processing on the Microstructure and Electrical Conductivity of Sintered $CNTs/Fe/Al_2O_3$ Nanocomposites

  • Choa, Yong-Ho;Yoo, Seung-Hwa;Yang, Jae-Kyo;Park, Jin-Woo;Oh, Sung-Tag;Kang, Kae-Myung;Kang, Sung-Goon
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.1087-1088
    • /
    • 2006
  • The microstructure and electrical conductivity of CNTs dispersed $Al_2O_3$ nanocomposites depending on the powder processing and CNTs content were demonstrated. The composite powders with homogeneous dispersion of CNTs could be synthesized by a catalytic route for direct formation of CNTs on nano-sized Fe dispersed $Al_2O_3$ powders. The sintered nanocomposite using the composite powder with directly synthesized CNTs showed homogeneous microstructure and enhanced elelctrical conductivity. The influence of powder processing on the properties of sintered nanocomposites was discussed by the observed microstructural features.

  • PDF

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.327-328
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.455-456
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation. reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that aluminaoriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF