• Title/Summary/Keyword: $Al_{13}$-Tridecamer

Search Result 6, Processing Time 0.026 seconds

Thermodynamic Consideration on the Occurrence of $Al_{13}$-Tridecamer in the Natural Conditions ($Al_{13}$-Tridecamer의 자연계 생성조건에 대한 열역학적 고찰)

  • 이규호;송유구;문희수;문지원;김인준
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.103-112
    • /
    • 2002
  • Despite the ecological importance of potentially phytotoxic $Al_{13}$-tridecamer and its formation in the simulated condition, it was not recognized in the natural soil environment. Here we performed thermodynamic calculations to examine the stability condition of $Al_{13}$-tridecamer based on the solubility of AI in the Bo horizon of Andisols, Jeju Island, dominantly composed of AI-containing solid phases such as $Al(OH)_{3}$, proto-imogolite and/or imogolite. We have found that $Al(OH)_{3}$, proto-imogolite and/or imogolite may control Al solubility in the moderate acid condition. It means that AI total activity of the soil solution equilibrated with these solid phases ranges from $10^{-6}$ ~ $10^{-8}$M in the pH 5 to 7. Calculations based on the thermodynamic data strongly indicate that the formation of $Al_{13}$-tridecamer closely related to the total activity of AI in the system. For example, for the formation of $Al_{13}$-tridecamer of $10^{-5}$M, Al total activity of $3{\times}10^{-3}$M are needed at pH 4, and $2{\times}10^{-5}$M in the pH 5 to 7. Therefore, this research and the thermodynamic consideration suggest strongly that $Al_{13}$-tridecamer should be negligible in natural soils, especially Andisols and Spodosols, These mainly contain $Al(OH)_{3}$, proto-imogolite and/or imogolite, which could prevent the formation of $Al_{13}$-tridecamer by controlling the AI total activity low. It means that the toxicity of $Al_{13}$-tridecamer with the increase of soil acidification may be considered to be definitely low.

Characteristics of Water Contamination and Precipitates of Acid Mine Drainage, Bongyang Abandoned Coal Mine, Danyang, Chungbuk Province with Emphasis on Fe and Al behaviors (충북 단양 봉양폐탄광 산성광산배수의 수질오염과 침전물의 특성: 철, 알루미늄의 거동을 중심으로)

  • Choo, Chang Oh;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.163-183
    • /
    • 2019
  • We investigated acid mine drainage (AMD) of Bongyang abandoned coal mine, Danyang, Chungbuk Province with emphasis on geochemical contaminants in AMD and precipitates using chemical analyses, XRD, SEM, IR, and $^{27}Al$ NMR. Water chemistry changes with pH and oversaturation of chemical species. According to calculation of saturation index, the AMD is saturated with various Fe, Al minerals. Orange or orcher precipitates are composed of schwertmannite and goethite, associated with Leptothrix orchracea bacteria, whereas whitish precipitates are composed mostly of alumimous minerals such as basaluminite with poor crystallinity. The whitish precipitates include trace $Al_{13}$-Tridecamer. It is important to control the precipitation and solubility of aluminous species for ensuring remediation and control for the AMD discharged from the Bongyang abandoned coal mine.

Fe and Al Behaviors in Precipitates and Pollution Characteristics of Acid Mine Drainage from the Donghae Abandoned Coal Mine, Taebaek, Korea (태백시 동해폐탄광 산성광산배수의 오염현황과 하상퇴적물 내 철, 알루미늄의 거동특성)

  • Choo, Chang Oh;Park, Jung-Won;Lee, Jin Kook
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.579-598
    • /
    • 2019
  • We investigated geochemical contaminants and Fe, Al behavior in precipitates of acid mine drainage (AMD) from the Donghae abandoned coal mine, Taebaek, Gangwon Province using aqueous chemical analyses, XRD, IR, and 27Al NMR, Our results showed that water chemistry changed with pH and Eh, and saturation indices of chemical species in the AMD. According to saturation calculated by visual MINTEQ, the AMD was saturated with various Fe-, Al-oxyhydroxide minerals. Reddish brown precipitates are composed of schwertmannite, ferrihydrite, and goethite, whereas whitish precipitates are composed mostly of alumimous minerals such as poorly crystallized basaluminite with trace Al13-Tridecamer. It is important to apply active treatment methods rather than simple storage pond and to control the precipitation and solubility of iron species and aluminous species for ensuring remediation and control for the AMD discharged from the Donghae abandoned coal mine.

Preliminary Study on the Phase Transition of White Precipitates Found in the Acid Mine Drainage (산성광산배수에서 발견되는 흰색침전물의 상전이에 대한 예비 연구)

  • Yeo, Jin Woo;Kim, Yeongkyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.79-86
    • /
    • 2019
  • The white aluminum phases in acid mine drainage usually precipitates when mixed with stream waters with relatively high pH. The minerals in white precipitates play important roles in controlling the behavior of heavy metals by adsorbing and coprecipitation. By the phase transition of these minerals in white precipitates, dissolution and readsorption of heavy metals may occur. This study was conducted to obtain preliminary information on the phase transition of the mineral phases in white precipitates. In this study, the mineral phase changes in the white precipitates collected from the stream around Dogye Mining Site over time were investigated with different pH values and temperatures. White precipitates consist mainly of basaluminite, amorphous $Al(OH)_3$ and a small amount of $Al_{13}$-tridecamer. During aging, the incongruent dissolution of the basaluminite occurs first, increasing the content of the amorphous $Al(OH)_3$. After that, pseudoboehmite is finally precipitated following the precursor phase of pseudoboehmite. At $80^{\circ}C$, this series of processes was clearly observed, but at relatively low temperatures, no noticeable changes were observed from the initial condition with coexisting basaluminite and amorphous $Al(OH)_3$. At high pH, the desorption of $SO{_4}^{2-}$ group in basaluminite was initiated to promote phase transition to the pseudoboehmite precursor. Over time, the solution pH decreases due to the dissolution and phase transition of the minerals, and even after the precipitation of pseudoboehmite, only the particle size slightly increased but no clear cystal form was observed.