• Title/Summary/Keyword: $Al-N_2$-AlN system

Search Result 351, Processing Time 0.029 seconds

Synthesis of Nano-size Aluminum Nitride Powders by Chemical Vapor Process (화학기상공정을 이용한 나노질화알루미늄 분말 합성)

  • Pee, Jae-Hwan;Park, Jong-Chul;Kim, Yoo-Jin;Hwang, Kwang-Taek;Kim, So-Ryong
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.496-502
    • /
    • 2008
  • Aluminum nitride (AlN) powders were prepared by the chemical vapor synthesis (CVS) process in the $AlCl_{3}-NH_{3}-N_{2}$ system. Aluminum chloride ($AlCl_3$) as the starting material was gasified in the heating chamber of $300^{\circ}C$. Aluminum chloride gas transported to the furnace in $NH_{3}-N_{2}$ atmosphere at the gas flow rate of 200-400ml/min. For samples synthesized between 700 and $1200^{\circ}C$, the XRD peaks corresponding to AlN were comparatively sharp and also showed an improvement of crystallinity with increasing the reaction temperature. In additions, the average particle size of the AlN powders decreased from 250 to 40 nm, as the reaction temperature increased.

N2O Decomposition Characteristics of Dual Bed Mixed Metal Oxide Catalytic System using Partial Oxidation of Methane (메탄의 부분산화를 이용한 이중 혼합금속산화물 촉매 반응시스템의 N2O 분해 특성 연구)

  • Lee, Nan Young;Woo, Je-Wan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.82-87
    • /
    • 2008
  • $N_2O$ decomposition characteristics of dual bed mixed metal oxide catalytic system was investigated. The partial oxidation of methane at first reactor of dual bed catalytic system was performed over Co-Rh-Al (1/0.2/1) catalyst under the optimized condition of $8,000h^{-1}$ GHSV, gas ratio ($CH_4:O_2=5:1$) at $500^{\circ}C$. In the dual bed system investigated herein, the second catalyst bed was employed for the $N_2O$ decomposition using product of partial oxidation of methane at first bed. An excellent $N_2O$ conversion activity even at lower temperature ($<250^{\circ}C$) was obtained with Co-Rh-Al (1/0.2/1) or Co-Rh-Zr-Al (1/0.2/0.3/1) catalyst by combining Co-Rh-Al (1/0.2/1) hydrotalcite catalyst for the partial oxidation of methane in a dual-bed system. The $N_2O$ conversion activity is drastically reduced in the presence of oxygen in second bed of a dual-bed system over Co-Rh-Al (1/0.2/1) catalyst at $300^{\circ}C$.

Characteristics of AlN Thin Films by Magnetron Sputtering System Using Reactive Gases of N2 and NH3 (N2와 NH3 반응성가스를 사용하여 마그네트론 스퍼터링법으로 제작한 AlN박막의 특성)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.138-143
    • /
    • 2015
  • Aluminum nitride, a compound semiconductor, has a Wurtzite structure; good material properties such as high thermal conductivity, great electric conductivity, high dielectric breakdown strength, a wide energy band gap (6.2eV), a fast elastic wave speed; and excellent in thermal and chemical stability. Furthermore, the thermal expansion coefficient of the aluminum nitride is similar to those of Si and GaAs. Due to these characteristics, aluminum nitride can be applied to electric packaging components, dielectric materials, SAW (surface acoustic wave) devices, and photoelectric devices. In this study, we surveyed the crystallization and preferred orientation of AlN thin films with an X-ray diffractometer. To fabricate the AlN thin film, we used the magnetron sputtering method with $N_2$, NH3 and Ar. According to an increase in the partial pressures of $N_2$ and $NH_3$, Al was nitrified and deposited onto a substrate in a molecular form. When AlN was fabricated with $N_2$, it showed a c-axis orientation and tended toward a high orientation with an increase in the temperature. On the other hand, when AlN was fabricated with $NH_3$, it showed a-axis orientation. This result is coincident with the proposed mechanism. We fabricated AlN thin films with an a-axis orientation by controlling the sputtering electric power, $NH_3$ pressure, deposition speed, and substrate temperature. According to the proposed mechanism, we also fabricated AlN thin films which demonstrated high a-axis and c-axis orientations.

Phase Relations and Microstructure of Comounds in the $Si_3N_4-Al_2O_3-SiO_2$ system at $1700^{\cire}C$ ($Si_3N_4-Al_2O_3-SiO_2$계의 1,$700^{\circ}C$에서 생성하는 화합물의 상관계 및 미구조)

  • Lee, Eey-Jong;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.16 no.4
    • /
    • pp.206-212
    • /
    • 1979
  • The phase relations and microstructure appeared at 1700℃ in a system of Si3N4-Al2O3-SiO2 were studied. The samples were pressurelessly sintered at 1700℃ for 1hr and reheated at 1600℃ for 1hr under nitrogen atmosphere. The compounds formed were identified by X-ray diffraction method and the microstrues were observed by SEM. The stable phases appeared in this system were X-phase, Si2ON2, β'-Si3N4 and Mullite. From the results of those experiments, it was concluded that the X-phase has very close composition to that proposed by G, K. Layden, Si3Al6O12N2. SEM photographs showed that Si2ON2 was a plate phase and X-phase was a rectagular plate phase.

  • PDF

Mechanical Milling of Lithium with Metal Oxide and its Reactivity with Gases

  • Yokoi, Tomomichi;Yamasue, Eiji;Okumura, Hideyuki;Ishihara, Keiichi N.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.959-960
    • /
    • 2006
  • Li reacts with $N_2$ at room temperature. In order to activate Li, the mechanical milling of Li with stable metal oxide, namely, $Al_2O_3$ and MgO, using a high energy vibrating ball mill was performed. In the case of Li-MgO system, it reacts with $N_2$, but hardly reacts with $O_2$. The reaction with $N_2$ generally produces $Li_3N$, while for some vigorous reactions the $Mg_3N_2$ is produced as the major phases. In the case of $Li-Al_2O_3$ system, reactivities with both $N_2$ and $O_2$ are high. The difference is explained in terms of the reaction mechanism and the Li state.

  • PDF

Light Enhancement Al2O3 Passivation in InGaN/GaN based Blue Light-emitting Diode Lamps

  • So Soon-Jin;Kim Kyeong-Min;Park Choon-Bae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.8
    • /
    • pp.775-779
    • /
    • 2006
  • In this study, sputtered $Al_2O_3$ thin films were evaluated as a passivation layer in the process of InGaN-based blue LEDs in order to improve the brightness of LED lamps. In terms of packaged LED lamps, lamps with $Al_2O_3$ passivation layer emanated higher brightness than those with $SiO_2$ passivation layer, and LED lamps with 90 nm $Al_2O_3$ passivation layer were the brightest among four kinds of lamps. Although lamps with $Al_2O_3$ passivation had a slight increase in operating voltage, their brightness was improved about 13.6 % compare to the lamps made of conventional LEDs without the changes of emitting wavelength.

The properties of AlGaN epi layer grown by HVPE (HVPE에 의해 성장된 AlGaN epi layer의 특성)

  • Jung, Se-Gyo;Jeon, Hun-Soo;Lee, Gang-Seok;Bae, Seon-Min;Yun, Wi-Il;Kim, Kyoung-Hwa;Yi, Sam-Nyung;Yang, Min;Ahn, Hyung-Soo;Kim, Suck-Whan;Yu, Young-Moon;Cheon, Seong-Hak;Ha, Hong-Ju
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.1
    • /
    • pp.11-14
    • /
    • 2012
  • The AlGaN layer has direct wide bandgaps ranging from 3.4 to 6.2 eV. Nowadays, it is becoming more important to fabricate optical devices in an UV region for the many applications. The high quality AlGaN layer is necessary to establish the UV optical devices. However, the growth of AlGaN layer on GaN layer is difficult due to the lattice mismatch and difference thermal expansion coefficient between GaN layer and AlGaN layer. In this paper, we attempted to grow the LED structure on GaN template by mixed-source HVPE method with multi-sliding boat system. We tried to find the optical and lattice transition of active layer by control the Al content in mixed-source. For the growth of epi layer, the HCl and $NH_3$ gas were flowed over the mixed-source and the carrier gas was $N_2$. The temperature of source zone and growth zone was stabled at 900 and $1090^{\circ}C$, respectively. After the growth, we performed the x-ray diffraction (XRD) and electro luminescence (EL) measurement.

Oxidation of CrAlMgSiN thin films between 600 and 900℃ in air (CrAlMgSiN 박막의 600-900℃에서의 대기중 산화)

  • Won, Seong-Bin;Xu, Chunyu;Hwang, Yeon-Sang;Lee, Dong-Bok
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.112-113
    • /
    • 2013
  • Thin CrAlMgSiN films, whose composition were 30.6Cr-11.1Al-7.3Mg-1.2Si-49.8N (at.%), were deposited on steel substrates in a cathodic arc plasma deposition system. They consisted of alternating crystalline Cr-N and AlMgSiN nanolayers. After oxidation at $800^{\circ}C$ for 200 h in air, a thin oxide layer formed by outward diffusion of Cr, Mg, Al, Fe, and N, and inward diffusion of O ions. Silicon ions were relatively immobile at $800^{\circ}C$. After oxidation at $900^{\circ}C$ for 10 h in air, a thin $Cr_2O_3$ layer containing dissolved ions of Al, Mg, Si, and Fe formed. Silicon ions became mobile at $900^{\circ}C$. After oxidation at $900^{\circ}C$ for 50 h in air, a thin $SiO_2-rich$ layer formed underneath the thin $Cr_2O_3$ layer. The film displayed good oxidation resistance. The main factor that decreased the oxidation resistance of the film was the outward diffusion and subsequent oxidation of Fe at the sample surface, particularly along the coated sample edge.

  • PDF

Effects of Sputtering Conditions of TiW Under Bump Metallurgy on Adhesion Strength of Au Bump Formed on Al and SiN Films (Al 및 SiN 박막 위에 형성된 TiW Under Bump Metallurgy의 스퍼터링 조건에 따른 Au Bump의 접착력 특성)

  • Jo, Yang-Geun;Lee, Sang-Hee;Kim, Ji-Mook;Kim, Hyun-Sik;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.3
    • /
    • pp.19-23
    • /
    • 2015
  • In this study, two types of Au/TiW bump samples were fabricated by the electroplating process onto Al/Si and SiN/Si wafers for the COG (Chip On Glass) packaging. TiW was used as the UBM (Under Bump Metallurgy) material of the Au bump and it was deposited by a sputtering method under the sputtering powers ranges from 500 to 5000 Watt. We investigated the delamination phenomenas for the prepared samples as a function of the input sputtering powers. The stable interfacial adhesion condition was found to be 1500 Watt in sputtering power. In addition, the SAICAS (Surface And Interfacial Cutting Analysis System) measurement was used to find the adhesion strength of Au bumps for the prepared samples. TiW UBM films were deposited at the 1500 Watt sputtering power. As a results, there was a similar adhesion strengths between TiW/Au interfacial films on Al/Si and SiN/Si wafers. However, the adhesion strength of TiW UBM sputtering films on Al and SiN under films were 2.2 times differences, indicating 0.475 kN/m for Al/Si wafer and 0.093 kN/m for SiN/Si wafer, respectively.

Properties of Pt/${Al_0.33}{Ga_0.67}N$ Schottky Type UV Photo-detector (Pt 전극을 이용한 ${Al_0.33}{Ga_0.67}N$ 쇼트키형 자외선 수광소자의 동작특성)

  • 신상훈;정영로;이재훈;이용현;이명복;이정희;이인환;한윤봉;함성호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.7
    • /
    • pp.486-493
    • /
    • 2003
  • Schottky type A $l_{0.33}$G $a_{0.67}$N ultraviolet photodetectors were fabricated on the MOCVD grown AlGaN/ $n^{+}$-GaN and AlGaN/AlGaN interlayer/ $n^{+}$-GaN structures. The grown layers have the carrier concentrations of -$10^{18}$, and the mobilities were 236 and 269 $\textrm{cm}^2$/V.s, respectively. After mesa etching by ICP etching system, the Si3N4 layer was deposited for passivation between the contacts and Ti/AL/Ni/Au and Pt were deposited for ohmic and Schottky contact, respectively. The fabricated Pt/A $l_{0.33}$G $a_{0.67}$N Schottky diode revealed a leakage current of 1 nA for samples with interlayer and 0.1$\mu\textrm{A}$ for samples without interlayer at a reverse bias of -5 V. In optical measurement, the Pt/A $l_{0.33}$G $a_{0.67}$N diode with interlayer showed a cut-off wavelength of 300 nm, a prominent responsivity of 0.15 A/W at 280 nm and a UV-visible extinction ratio of 1.5x$10^4./TEX>.