• Title/Summary/Keyword: $A_{m,n}$

Search Result 17,395, Processing Time 0.048 seconds

ON CYCLIC DECOMPOSITIONS OF THE COMPLETE GRAPH INTO THE 2-REGULAR GRAPHS

  • Liang, Zhihe
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.261-271
    • /
    • 2007
  • The symbol C($m_1^{n_1}m_2^{n_2}{\cdots}m_s^{n_s}$) denotes a 2-regular graph consisting of $n_i$ cycles of length $m_i,\;i=1,\;2,\;{\cdots},\;s$. In this paper, we give some construction methods of cyclic($K_v$, G)-designs, and prove that there exists a cyclic($K_v$, G)-design when $G=C((4m_1)^{n_1}(4m_2)^{n_2}{\cdots}(4m_s)^{n_s}\;and\;v{\equiv}1(mod\;2|G|)$.

REGULARITY AND SEMIPOTENCY OF HOM

  • Hakmi, Hamza
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.151-167
    • /
    • 2014
  • Let M, N be modules over a ring R and $[M,N]=Hom_R(M,N)$. The concern is study of: (1) Some fundamental properties of [M, N] when [M, N] is regular or semipotent. (2) The substructures of [M, N] such as radical, the singular and co-singular ideals, the total and others has raised new questions for research in this area. New results obtained include necessary and sufficient conditions for [M, N] to be regular or semipotent. New substructures of [M, N] are studied and its relationship with the Tot of [M, N]. In this paper we show that, the endomorphism ring of a module M is regular if and only if the module M is semi-injective (projective) and the kernel (image) of every endomorphism is a direct summand.

ON WEAKLY 2-ABSORBING PRIMARY SUBMODULES OF MODULES OVER COMMUTATIVE RINGS

  • Darani, Ahmad Yousefian;Soheilnia, Fatemeh;Tekir, Unsal;Ulucak, Gulsen
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.5
    • /
    • pp.1505-1519
    • /
    • 2017
  • Assume that M is an R-module where R is a commutative ring. A proper submodule N of M is called a weakly 2-absorbing primary submodule of M if $0{\neq}abm{\in}N$ for any $a,b{\in}R$ and $m{\in}M$, then $ab{\in}(N:M)$ or $am{\in}M-rad(N)$ or $bm{\in}M-rad(N)$. In this paper, we extended the concept of weakly 2-absorbing primary ideals of commutative rings to weakly 2-absorbing primary submodules of modules. Among many results, we show that if N is a weakly 2-absorbing primary submodule of M and it satisfies certain condition $0{\neq}I_1I_2K{\subseteq}N$ for some ideals $I_1$, $I_2$ of R and submodule K of M, then $I_1I_2{\subseteq}(N:M)$ or $I_1K{\subseteq}M-rad(N)$ or $I_2K{\subseteq}M-rad(N)$.

GROUP-FREENESS AND CERTAIN AMALGAMATED FREENESS

  • Cho, Il-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.597-609
    • /
    • 2008
  • In this paper, we will consider certain amalgamated free product structure in crossed product algebras. Let M be a von Neumann algebra acting on a Hilbert space Hand G, a group and let ${\alpha}$ : G${\rightarrow}$ AutM be an action of G on M, where AutM is the group of all automorphisms on M. Then the crossed product $\mathbb{M}=M{\times}{\alpha}$ G of M and G with respect to ${\alpha}$ is a von Neumann algebra acting on $H{\bigotimes}{\iota}^2(G)$, generated by M and $(u_g)_g{\in}G$, where $u_g$ is the unitary representation of g on ${\iota}^2(G)$. We show that $M{\times}{\alpha}(G_1\;*\;G_2)=(M\;{\times}{\alpha}\;G_1)\;*_M\;(M\;{\times}{\alpha}\;G_2)$. We compute moments and cumulants of operators in $\mathbb{M}$. By doing that, we can verify that there is a close relation between Group Freeness and Amalgamated Freeness under the crossed product. As an application, we can show that if $F_N$ is the free group with N-generators, then the crossed product algebra $L_M(F_n){\equiv}M\;{\times}{\alpha}\;F_n$ satisfies that $$L_M(F_n)=L_M(F_{{\kappa}1})\;*_M\;L_M(F_{{\kappa}2})$$, whenerver $n={\kappa}_1+{\kappa}_2\;for\;n,\;{\kappa}_1,\;{\kappa}_2{\in}\mathbb{N}$.

RELATIVE PROJECTIVITY AND RELATED RESULTS

  • Toroghy, H.Ansari
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.419-426
    • /
    • 2004
  • Let R be a commutative Noetherian ring and let M be an Artinian R-module. Let M${\subseteq}$M′ be submodules of M. Suppose F is an R-module which is projective relative to M. Then it is shown that $Att_{R}$($Hom_{A}$ (F,M′) :$Hom_{A}$(F,M) $In^n$), n ${\in}$N and $Att_{R}$($Hom_{A}$(F,M′) :$Hom_{A}$(F,M) In$^n$ $Hom_{A}$(F,M") :$Hom_{A}$(F,M) $In^n$),n ${\in}$ N are ultimately constant.

DETERMINANT AND SPECTRUM PRESERVING MAPS ON Mn

  • Kim, Sang Og
    • Korean Journal of Mathematics
    • /
    • v.20 no.3
    • /
    • pp.285-291
    • /
    • 2012
  • Let $M_n$ be the algebra of all complex $n{\times}n$ matrices and ${\phi}:M_n{\rightarrow}M_n$ a surjective map (not necessarily additive or multiplicative) satisfying one of the following equations: $${\det}({\phi}(A){\phi}(B)+{\phi}(X))={\det}(AB+X),\;A,B,X{\in}M_n,\\{\sigma}({\phi}(A){\phi}(B)+{\phi}(X))={\sigma}(AB+X),\;A,B,X{\in}M_n$$. Then it is an automorphism, where ${\sigma}(A)$ is the spectrum of $A{\in}M_n$. We also show that if $\mathfrak{A}$ be a standard operator algebra, $\mathfrak{B}$ is a unital Banach algebra with trivial center and if ${\phi}:\mathfrak{A}{\rightarrow}\mathfrak{B}$ is a multiplicative surjection preserving spectrum, then ${\phi}$ is an algebra isomorphism.

BASIC CONSTRUCTIONS FOR Nf ᑕ Mf

  • Lee, Jung Rye
    • Korean Journal of Mathematics
    • /
    • v.5 no.2
    • /
    • pp.119-125
    • /
    • 1997
  • We show that there exists an isomorphism between the basic construction $(M_f)_1$ for $N_f{\subset}M_f$ and the reduction $(M_1)_f$ of the basic construction $M_1$ for $N{\subset}M$, where $f$ is a nontrivial projection in N. For a nontrivial projection $f{\in}N^{\prime}{\cap}M$ we give the basic construction $(M_f)_1$ for $N_f{\subset}M_f$ and compare it with $(M_1)_f$.

  • PDF

A note on totally geodesic maps

  • Chung, In-Jae;Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.29 no.2
    • /
    • pp.233-236
    • /
    • 1992
  • Let f:M.rarw.N be a smooth map between Rioemannian manifolds M and N. If f maps geodesics of M to geodesics of N, f is called totally geodesic. As is well known, totally geodesic maps are harmonic and the image f(M) of a totally geodesic map f:M.rarw. N is an immersed totally geodesic submanifold of N (cf. .cint. 6.3 of [W]). We are interested in the following question: When is a harmonic map f:M .rarw. N with rank .leq. 1 everywhere on M totally geodesic\ulcorner In other words, when is the image of a harmonic map f:M .rarw. N with rank .leq. 1 everywhere on M geodesics of N\ulcorner In this note, we give some sufficient conditions on curvatures of M. It is interesting that no curvature assumptions on target manifolds are necessary in Theorems 1 and 2. Some properties of totally geodesic maps are also given in Theorem 3. We think our Theorem 3 is somewhat unusual in view of the following classical theorem of Eells and Sampson (see pp.124 of [ES]).

  • PDF

INVOLUTION-PRESERVING MAPS WITHOUT THE LINEARITY ASSUMPTION AND ITS APPLICATION

  • Xu, Jin-Li;Cao, Chong-Guang;Wu, Hai-Yan
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.97-103
    • /
    • 2009
  • Suppose F is a field of characteristic not 2 and $F\;{\neq}\;Z_3$. Let $M_n(F)$ be the linear space of all $n{\times}n$ matrices over F, and let ${\Gamma}_n(F)$ be the subset of $M_n(F)$ consisting of all $n{\times}n$ involutory matrices. We denote by ${\Phi}_n(F)$ the set of all maps from $M_n(F)$ to itself satisfying A - ${\lambda}B{\in}{\Gamma}_n(F)$ if and only if ${\phi}(A)$ - ${\lambda}{\phi}(B){\in}{\Gamma}_n(F)$ for every A, $B{\in}M_n(F)$ and ${\lambda}{\in}F$. It was showed that ${\phi}{\in}{\Phi}_n(F)$ if and only if there exist an invertible matrix $P{\in}M_n(F)$ and an involutory element ${\varepsilon}$ such that either ${\phi}(A)={\varepsilon}PAP^{-1}$ for every $A{\in}M_n(F)$ or ${\phi}(A)={\varepsilon}PA^{T}P^{-1}$ for every $A{\in}M_n(F)$. As an application, the maps preserving inverses of matrces also are characterized.

  • PDF

SOME NEW IDENTITIES CONCERNING THE HORADAM SEQUENCE AND ITS COMPANION SEQUENCE

  • Keskin, Refik;Siar, Zafer
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.1-16
    • /
    • 2019
  • Let a, b, P, and Q be real numbers with $PQ{\neq}0$ and $(a,b){\neq}(0,0)$. The Horadam sequence $\{W_n\}$ is defined by $W_0=a$, $W_1=b$ and $W_n=PW_{n-1}+QW_{n-2}$ for $n{\geq}2$. Let the sequence $\{X_n\}$ be defined by $X_n=W_{n+1}+QW_{n-1}$. In this study, we obtain some new identities between the Horadam sequence $\{W_n\}$ and the sequence $\{X_n\}$. By the help of these identities, we show that Diophantine equations such as $$x^2-Pxy-y^2={\pm}(b^2-Pab-a^2)(P^2+4),\\x^2-Pxy+y^2=-(b^2-Pab+a^2)(P^2-4),\\x^2-(P^2+4)y^2={\pm}4(b^2-Pab-a^2),$$ and $$x^2-(P^2-4)y^2=4(b^2-Pab+a^2)$$ have infinitely many integer solutions x and y, where a, b, and P are integers. Lastly, we make an application of the sequences $\{W_n\}$ and $\{X_n\}$ to trigonometric functions and get some new angle addition formulas such as $${\sin}\;r{\theta}\;{\sin}(m+n+r){\theta}={\sin}(m+r){\theta}\;{\sin}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},\\{\cos}\;r{\theta}\;{\cos}(m+n+r){\theta}={\cos}(m+r){\theta}\;{\cos}(n+r){\theta}-{\sin}\;m{\theta}\;{\sin}\;n{\theta},$$ and $${\cos}\;r{\theta}\;{\sin}(m+n){\theta}={\cos}(n+r){\theta}\;{\sin}\;m{\theta}+{\cos}(m-r){\theta}\;{\sin}\;n{\theta}$$.