실시간 변화하는 교통상황을 파악하고 교통혼잡을 완화시키려는 각종 교통정책들을 개발하고 평가하기 위하여 동적 통행배정모형에 대한 연구가 지속되고 있으며 상당한 성과 를 이루고 있다. 그러나 이론적인 어려움과 계산량과 과다로 기존의 모형들은 대부분 단순 가로망을 대상으로 적용되어 왔으며 대규모 가로망에 적용하는 데는 상당한 어려움을 겪고 있다. 본 연구의 목적은 실제 가로망에 쉽게 적용할 수 있는 휴리스틱 동적 통행배정모형을 개발하고 이를 해석할 수 있는 알고리즘을 개발하는 데 있다. 개발되는 모형은 변동부등식 (variational inequality)으로 구축되며 알고리즘은 휴리스틱 알고리즘(heuristic disagonalized algorithm)을 개발한다. 예제 가로망을 대상으로 개발된 모형을 평가하며 도출된 해가 Wrdrop의 균형해(equilibrium)임을 보인다.
Journal of the military operations research society of Korea
/
v.33
no.2
/
pp.31-47
/
2007
The main purpose of this study is to find out the best solution of the vehicle routing problem with hard time window by using both genetic algorithm and heuristic. A mathematical programming model was also suggested in the study. The suggested mathematical programming model gives an optimal solution by using ILOG-CPLEX. This study also suggests a hybrid genetic algorithm which considers the improvement of generation for an initial solution by savings heuristic and two heuristic processes. Two heuristic processes consists of 2-opt and Or-opt. Hybrid genetic algorithm is also compared with existing problems suggested by Solomon. We found better solutions rather than the existing genetic algorithm.
Journal of Korea Spatial Information System Society
/
v.10
no.2
/
pp.35-48
/
2008
In this paper, we propose a Dynamic Heuristic to reduce the number of node accesses and improve quality of path in the client-based navigation service. The Dynamic Heuristic is to use heuristic data from server that is calculated with traffic data. The server-based navigation service provides a path searched on server and transmits it to client, but we propose that server only provide heuristic data to client. The proposed client searches a path with heuristic transmitted data from server. We present a new algorithm for using Dynamic Heuristic in the path-finding. The algorithm bases Grid Based Path-Finding, and has minimum speed data of edges in grid. It removes several grids whose minimum speed is less than limited speed.
The Transactions of the Korea Information Processing Society
/
v.4
no.10
/
pp.2477-2484
/
1997
Best-first heuristic search algorithm, such as $A^{\ast}$ algorithm, are one of the most important techniques used to solve many problems in artificial intelligence. A common feature of heuristic search is its high computational complexity, which prevents the search from being applied to problems is practical domains such as route-finding in road map with significantly many nodes. In this paper, several heuristic search algorithms are concerned. A new dynamic weighting heuristic method called the pat-sensitive heuristic is proposed. It is based on a dynamic weighting heuristic, which is used to improve search effort in practical domain such as admissible heuristic is not available or heuristic accuracy is poor. It's distinctive feature compared with other dynamic weighting heuristic algorithms is path-sensitive, which means that ${\omega}$(weight) is adjusted dynamically during search process in state-space search domain. For finding an optimal path, randomly scattered road-map is used as an application area.
There are a lot of people trying to solve the Traveling Salesman Problem (TSP) by using the Meta Heuristic Algorithms. TSP is an NP-Hard problem, and is used in testing search algorithms and optimization algorithms. Also TSP is one of the models of social problems. Many methods are proposed like Hybrid methods and Custom-built methods in Meta Heuristic. In this paper, we propose the S-MINE Algorithm to use the MINE Algorithm introduced in 2009 on the TSP.
기존 온톨로지들을 공유 및 재사용하기 위하여 온톨로지 정렬이 연구되고 있다. 기존 정렬 시스템은 온톨로지 데이터 양에 따라 매트릭스를 생성하고 과도한 계산을 통해 처리하여 대용량 데이터 집합에 대하여 공간적 및 계산적으로 부하를 발생하여 효율적이지 않다. 이를 해결하기 위하여 온톨로지 정렬을 휴리스틱 알고리즘을 적용하여 연구 진행하였다. 기존 휴리스틱 알고리즘은 계산이 간단하지만 조율해야 하는 파라미터가 많기에 특정 도메인에 최적 조합이 필요하며 만족한 성능을 얻지 못하였다. 이 논문에서는 Discrete Cuckoo Search(DCS) 기반 온톨로지 정렬 알고리즘을 제안한다. 제안한 알고리즘은 조율해야 하는 파라미터의 개수가 적고 Levy Flight 분포에 따라 탐색하여 계산이 간단하다. 제안된 알고리즘의 성능을 평가하기 위해 OAEI(Ontology Alignment Evaluation Initiative)에서 제공하는 벤치마크 데이터를 사용하여 정확률(Precision)과 재현율(Recall)을 구하고 기존 휴리스틱 정렬 알고리즘과 비교 평가하였다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.78-80
/
2000
클러스터링이란 주어진 데이터들을 유사한 성질을 가지는 군집으로 나누는 것으로 많은 분야에서 응용되고 있으며, 특히 최근 관심의 대상인 데이터 마이닝의 중요한 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적해를 찾는 진화알고리즘을 사용하여 지역적 최적해에 수렴되는 문제점을 개선하였으며, 자동으로 적절한 클러스터 개수를 결정할 수 있게 하였다. 또한 진화알고리즘의 단점인 탐색공간의 확대에 따른 탐색시간의 증가는 휴리스틱 연산을 정의하여 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 가우시안 분포 데이터를 사용하여 제안한 알고리즘의 성능이 우수함을 보였다.
Journal of the Korea Society of Computer and Information
/
v.19
no.5
/
pp.89-98
/
2014
This paper suggests heuristic algorithm for single-model simple assembly line balancing problem that is a kind of NP-hard problem. This problem primarily can be solved metaheuristic method. This heuristic algorithm set the main-path that has a most number of operations from start to end-product. Then the clustering algorithm can be assigns operations to each workstation within cycle time follow main-path. This algorithm decides minimum number of workstations and can be reduces the cycle time. This algorithm can be better performance then metaheuristic methods.
Proceedings of the Korean Information Science Society Conference
/
2005.07b
/
pp.667-669
/
2005
최근 새로운 데이터마이닝 방법인 지도 군집화가 소개되고 있다. 지도 군집화의 목적은 동일한 클래스가 한 군집에 포함되도록 하는 것이다. 지도 군집화는 데이터에 대한 배경 지식을 획득하거나 분류 방법의 성능을 향상시키기 위한 방법으로 사용된다. 그러나 군집화 방법에서 파생된 지도 군집화 역시 군집화 개수 설정 방법에 따라 효율성이 좌우된다. 따라서 클래스 분포에 따라 최적의 지도 군집화 개수를 찾기 위해 진화알고리즘을 적용할 수 있으나, 진화알고리즘은 대용량 데이터를 처리할 경우 수행 시간이 증가되어 효율성이 감소되는 문제가 있다. 본 논문은 지도 군집화보다 강인한인 지도 퍼지 군집화를 효율적으로 생성하기 위해 진화성이 우수한 휴리스틱 분할 진화알고리즘을 제안한다. 휴리스틱 분할 진화알고리즘은 개체를 생성할 때 문제영역의 지식을 반영한 휴리스틱 연산으로 탐색 시간을 단축시키고, 개체 평가 단계에서 전체 데이터 대신 샘플링된 부분 데이터들을 이용하여 진화하는 분할 진화 방법으로 수행 시간을 단축시킴으로써 진화알고리즘의 효율성을 높인다. 또한 효율적으로 개체를 평가하기 위해 지도 퍼지 군집화 알고리즘인 지도 분할 군집화 알고리즘(SPC: supervised partitional clustering)을 제안한다. 제안한 방법은 이차원 실험 데이터에 대해서 정확성과 효율성을 분석하여 그 타당성을 확인한다.
본 논문에서는 워크스테이션 네트웍(Network of Workstation) 환경에서 태스크 스케줄링 문제를 해결하기 위하여 태스크 중복을 기반으로 하는 휴리스틱 스케줄링 알고리즘을 제안한다. 제안된 알고리즘에서는 NoW에서 통신할 때 발생되는 충돌을 방지하기 위하여 네트웍 통신 자원을 우선 할당하고, 스케줄링 길이를 단축하고 병렬처리 시간을 줄이기 위한 중복 테스크를 선택할 때 휴리스틱을 사용한다. 제안된 알고리즘은 태스크 그래프를 입력으로 받아 NoW 환경의 워크스테이션으로 스케줄링하며, 태스크 그래프에서 노드수가 V일 때 최악의 경우 알고리즘의 시간 복잡도는 O($V^2$)이다. 제안한 알고리즘을 실제 응용 프로그램의 태스크 그래프에 적용하였다. 시뮬레이션을 통하여 제안된 알고리즈이 스케줄링 길이와 알고리즘에서 요구하는 워크스테이션의 수 관점에서 성능이 향상되었음을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.