병렬 컴퓨팅에서 중요 문제의 하나는 다중 태스크를 다중 프로세서 병렬 시스템의 여러 노드에 대한 최적의 매핑을 찾는 것이다. 이러한 매핑의 목적은 솔루션 품질에 손상 없이 총 실행시간을 최소화시키는 것이다. 이 분야에서는 많은 휴리스틱 방법들을 사용하여 나름대로 매핑 문제를 해결해 왔다. 본 논문에서는 효율적인 클러스터 데이터 매핑을 위한 혼합형 휴리스틱 기법에 대하여 기술한다. 제시하는 휴리스틱 기법은 유전알고리즘과 평균장어닐링 알고리즘을 혼합시킨 것으로 두 가지 방법의 장점들을 합하여 성능을 향상시킬 수 있음을 보여준다. 혼합형 휴리스틱 알고리즘의 솔루션과 실행시간을 기존 매핑 알고리즘들과 비교한 시뮬레이션 결과를 보고한다.
본 논문에서는 병렬 정보검색 시스템에 있어 클러스터 문서할당을 위한 두 가지 휴리스틱 기법을 제시한다. 효율적 문서할당에 관한 매핑 문제를 정의하고 유전알고리즘과 모의냉각기법에 기반을 두는 휴리스틱 매핑 알고리즘을 기술한다. 알고리즘 성능실험과 관련하여 시뮬레이션을 통한 다른 할당 알고리즘과 비교평가한 결과 개선된 성능을 얻을 수 있었다.
본 논문은 확장성(scalability)과 견고함(robustness)을 강조하는 새로운 형태의 병렬 분산 메타-휴리스틱 프레임워크를 제안하고 있다. PADO (Parallel And Distributed Optimization framework) 라고 이름 지어진 본 프레임워크는 이종의 계산 및 통신 자원들을 활용하여 메타-휴리스틱 알고리즘을 병렬화하고 스케일러블한 속도 향상을 얻을 수 있다. 본 프레임워크는 기존의 시퀀셜(sequential) 최적화 프레임워크에 메타-휴리스틱 알고리즘의 병렬화 기법중 하나인 island 모델을 개선하여 구현하였다. 본 연구는 부분적으로 정렬된 지식 공유 방법(Partially Ordered Knowledge Sharing) 모델을 이용하여 병렬 환경 코디네이션(coordination) 오버헤드를 줄였고 계산 노드에 대한 확장성을 얻었다. 본 프레임워크를 통해 기존의 많은 메타-휴리스틱 알고리즘들을 재사용 할 수 있고 다양한 분야의 최적화 문제에 적용 할 수 있으며 계산량이 많은 메타-휴리스틱 알고리즘을 병렬화를 통해 문제를 푸는 시간을 단축 할 수 있다. 순회 판매원 문제(Traveling Salesman Problem)를 통해 프레임워크의 실효성을 검증하였다.
대부분의 메타휴리스틱들은 동물의 행동을 모방한 것이다. 본 논문에서는 Mine 알고리즘을 제안한다. Mine 알고리즘(Mine Algorithm)은 인간의 행동을 모방한 메타휴리스틱이다. 탐색의 관점에서 인간의 노하우와 휴리스틱이 가장 잘 녹아 있는 업종은 광산업(mining industry)이다. Mine 알고리즘에서는 광산 업무에 초점을 맞추어서 인간의 행동패턴을 형식화한다. Mine 알고리즘은 다양한 탐색기법을 유연하게 구사하며, 그 때문에 광범위한 문제에서 고른 성능을 보인다. 즉, 범용성이 양호하다. 우리는 기존 메타휴리스틱들과의 비교 실험을 통하여 Mine 알고리즘의 개선된 범용성을 보인다.
차량을 타고 이동할 경우 좌회전, 우회전, U턴 등의 방향 전환은 차량의 속력 감소의 주요한 요인이 된다. 즉, 같은 거리를 이동할 경우 방향전환이 잦은 경로보다 직진 구간이 많은 경로가 보다 빨리 목적지에 도착할 수 있다. 이 논문에서는 직진성이 높은 경로를 탐색하기 위해서 방향전환비용을 고려한 턴 휴리스틱과 이률 적용한 경로탐색 알고리즘(TA* 알고리즘)을 제안한다. 또한 TA* 알고리즘의 탐색비용을 개선하기 위해서 일부 구간에서만 턴 휴리스틱을 적용하는 가변적인 턴 휴리스틱(VTA* 알고리즘)을 제안한다.
딥러닝의 학습 및 예측성능을 개선하기 위해서는 딥러닝 기법 내 연산과정의 개선과 함께 학습 및 예측에 사용되는 데이터의 전처리 과정이 중요하다. 본 연구에서는 딥러닝의 성능을 개량하기 위해 제안된 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형과 데이터 전처리 기법을 통해 댐의 수위를 예측하였다. 수위예측을 위해 Multi-Layer Perceptron(MLP), 메타휴리스틱 최적화 알고리즘인 Harmony Search(HS)와 딥러닝을 결합한 MLP using a HS(MLPHS) 및 Exponential Bandwidth Harmony Search with Centralized Global Search(EBHS-CGS)와 딥러닝을 결합한MLP using a EBHS-CGS(MLPEBHS)를 통해 댐의 수위를 예측하였다. 메타휴리스틱 최적화 알고리즘-딥러닝 결합모형의 학습 및 예측성능을 개선하기 위해 학습 및 예측을 위한 자료를 기반으로 데이터 전처리기법을 적용하였다. 적용된 데이터 전처리 기법은 정규화, 수위구간별 사상(Event)분리 및 수위 변동에 대한 자료의 구분이다. 수위예측을 위한 대상유역은 금강유역에 위치한 대청댐으로 선정하였다. 대청댐의 수위예측을 위해 대청댐 상류에 위치하는 수위관측소 3개소를 선정하여 수위자료를 취득하였다. 각 수위관측소에서 취득한 수위자료를 입력자료로 설정하였으며, 대청댐의 수위자료를 출력자료로 설정하여 메타휴리스틱 최적화 알고리즘-딥러닝 모형의 학습을 진행하였다. 각 수위관측소 및 대청댐에서 취득한 수위자료는 2010년부터 2020년까지 총 11년의 일 단위 수위자료이며, 2010년부터 2019년까지의 자료를 학습자료로 사용하였으며, 2020년의 자료를 예측 및 검증자료로 사용하였다.
본 연구에서는 실시간 휴리스틱 탐색 알고리즘을 개발하고 이것을 기존의 mini-min lookahead 알고리즘과 비교하였다. 많은 실시간 휴리스틱 탐색의 접근 방법에서 종종 전체 문제를 몇 개의 부 문제로 문제를 분할한다. 본 연구에서는 분할된 부 문제에서 마감시간을 적용할 뿐만 아니라 전체 해를 구하는데 있어서도 마감시간을 적용하는 알고리즘을 제안한다. 실시간 휴리스틱 탐색 알고리즘으로 제안된 $RTA^{\ast}$, SARTS, DYNORA 등의 알고리즘들은 탐색에 필요한 시간의 예측을 휴리스틱 평가 함수로부터 얻기 때문에 휴리스틱 평가의 정확도가 그 알고리즘의 성능을 보장하게 된다. 그러나 실세계의 문제에서 정확한 휴리스틱 평가 함수를 구하는 것은 매우 어려운 일이므로 부 문제 공간에서의 탐색 상황을 반영한 마감시간을 적용할 필요가 있다. 본 연구에서는 동적 마감시간 전략인 cut-off 방법을 사용하는 새로운 알고리즘을 제안한다.
2차원 저장소 적재는 NP-hard 문제로서 그 문제의 정확한 해를 구하는 것이 어려운 것으로 알려져 있으며, 이의 더 좋은 해를 얻기 위해 유전자(genetic) 알고리즘, 시뮬레이티드 어닐링(simulated annealing), 타부서치(tabu search)등과 같은 근사적 접근법이 제안되어 왔다. 하지만 분지한계(branch-and-bound)나 타부서치 기법들을 이용한 기존의 대표적인 근사 알고리즘들은 휴리스틱 알고리즘의 해에 기반을 둠으로 효율성이 낮고 반복수행에 의한 계산시간이 길다. 따라서 본 논문에서는 이러한 근사 알고리즘의 복잡성을 간소화하고, 알고리즘의 효율성을 높이기 위해 적재가능성을 판단하는 적합성 함수(fitness function)를 정의하고 이를 이용하여 어떤 특정 개체의 적재영역을 판단하는데 영향을 주는 적재영역의 수를 계산한다. 또한, 이들을 이용한 새로운 휴리스틱 알고리즘을 제안하였다. 끝으로 기존의 휴리스틱 또는 메타휴리스틱 기법과의 비교실험을 통해 기존의 휴리스틱 알고리즘인 FFF와 FBS에 비해 97%의 결과가 같거나 우수하였으며, 타부서치 알고리즘에 비해 86%의 결과가 같거나 우수한 것으로 나타났다.
동적 휴리스틱이란 고정된 정보가 아닌 서버로부터 실시간 도로정보를 전송받아 동적으로 변경되는 휴리스틱이다. 이 논문에서는 최고속력 동적휴리스틱을 이용하는 경로탐색 기법을 제안하고, 성능실험을 하였다. 최고속력 동적 휴리스틱이란 지도를 일정크기로 나눈 그리드내의 도로 중 최고속력을 동적 휴리스틱으로 활용하며, 최고속력이 높은 곳을 우선 탐색함으로 인해 거리에 따른 정보뿐만 아니라 실시간 정보를 활용하여 경로를 탐색한다. 성능 실험 결과 $A^*$ 알고리즘에 비해 경로의 질은 향상되었으나 탐색비용이 조금 늘었다.
시설물 입지 선정 문제(FLP)는 전통적인 최적화 문제중에 하나이다. FLP에 공급제약과 하나의 고객은 하나의 시설물에서만 제품을 공급받을 수 있다는 제약을 추가하면 단일 시설물 공급제약을 가지는 시설물 위치 설정 문제(SSFLP)가 된다. SSFLP는 NP-hard 문제로 알려져 있으며 진화 알고리즘과 같은 휴리스틱 알고리즘을 사용하여 해결하는 것이 일반적이다. 본 논문에서는 SSFLP를 위한 효율적인 진화 알고리즘을 제안한다. 제안하는 알고리즘은 적응형 링크 조절 진화 알고리즘과 3가지 휴리스틱 해 개선 방법을 조합하여 고안되었다. 제안하는 알고리즘을 벤치마크 문제에 적용하여 다른 알고리즘과 성능을 비교분석해 본 결과, 제안하는 알고리즘은 중간 크기의 문제에서 대부분 최적해를 찾았으며 큰 문제에서도 안정된 결과를 보여주었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.