• Title/Summary/Keyword: $1{\alpha}-(OH)D_3$

Search Result 196, Processing Time 0.023 seconds

Development of Particle-level Computer Assisted Instruction Materials for the ‘Solution’ Chapter in High School Chemistry Textbook and Analysis of the Educational Effects (고등학교 화학 교과서의 ‘용액’ 단원에 대한 입자 수준의 컴퓨터 보조 수업자료 개발 및 적용 효과 분석)

  • Baek, Seong-Hye;Kim, Jong-Hyeon;Kim, Jeong-Won;Park, Chan-Geun
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.2
    • /
    • pp.163-177
    • /
    • 2006
  • Alpha Nickel hydroxide samples have been synthesized by electrodeposition on platinum and nickel substrates at current densities of 1, 5, 6, 7 and 10 mAcm?2 at a controlled temperature of 30.00 oC from Ni(NO3)2 bath. Platinum substrate shows a tendency to incorporate less nitrate ions with increase in current density thus producing less hydroxy-deficient nickel hydroxide layers. On the whole the interlayer distance (d003) is found to be inversely proportional to the amount of nitrate ions incorporated in-between the lattice. For the first time we have observed a decrease in lattice spacing with increase in concentration of intercalant (anions) and the reason for lattice contraction is attributed to the columbic attractive forces exerted by the oppositely charged nitrate ion and positively charged slabs. The Infrared spectra of the samples with expanded interlayers show two types of OH vibrations corresponding to hydrogen bonded and non-hydrogen bonded OH groups whereas the contracted interlayers show only hydrogen-boded OH groups. Although the faradaic efficiency is found to increase with increase in applied current there is a local minimum at 6.0 mAcm?2 current density on both platinum and nickel substrates. In this manuscript, GC-MS data is provided which clearly demonstrates the electrodeposited nickel hydroxide sample to consist of huge amount of carbonate ions although the electrolyte solution in nickel nitrate.

Monitoring Bacterial Population Dynamics Using Real-Time PCR During the Bioremediation of Crude-Oil-Contaminated Soil

  • Baek, Kyung-Hwa;Yoon, Byung-Dae;Cho, Dae-Hyun;Kim, Byung-Hyuk;Oh, Hee-Mock;Kim, Hee-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.4
    • /
    • pp.339-345
    • /
    • 2009
  • We evaluated the activity and abundance of the crude-oil-degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon(TPH) degradation rate constants(k) of the soils treated with and without H17-1 were $0.103\;d^{-1}$ and $0.028\;d^{-1}$ respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA(16S rRNA), alkane monooxygenase(alkB4), and catechol 2,3-dioxygenase(23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil($\alpha$=0.05,p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.

Effects of Oleanolic Acid and Hederagenin on Acute Alcohol-Induced Hepatotoxicity in Mice (마우스에서 Oleanolic Acid와 Hederagenin이 급성 알코올성 간독성에 미치는 효과)

  • Jung, Suhan;Lee, Sanghoon;Ko, Kwang Suk
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.3
    • /
    • pp.307-312
    • /
    • 2016
  • We studied the effects of oleanolic acid and hederagenin on acute alcohol-induced hepatotoxicity in mice. Oleanolic acid [10 and 20 mg/kg body weight (BW)/d] or hederagenin (10 and 20 mg/kg BW/d) was orally administered to the study group for 1 week. On the last day of treatment, ethanol (5 g/kg BW) was orally administered to induce acute liver injury. The oleanolic acid-treated group showed lower levels of alanine aminotransferase compared to the ethanol-treated group (EtOH). The mRNA expression level of alcohol dehydrogenase was significantly increased in the high dosage oleanolic acid-treated group compared with the control and EtOH groups. The glutathione levels of the oleanolic acid or hederagenin-treated groups were elevated significantly compared with those of the control and EtOH groups. The mRNA expression levels of glutathione synthetic enzymes were also elevated in the oleanolic acid-treated groups. The oleanolic acid or hederagenin-treated groups also showed lower levels of mRNA expression of tumor necrosis factor alpha. Thus, these results show that oleanolic acid and hederagenin could reduce oxidative stress and hepatotoxicity in ethanol-treated mouse liver.

The enhancing effect of Acanthopanax sessiliflorus fruit extract on the antibacterial activity of porcine alveolar 3D4/31 macrophages via nuclear factor kappa B1 and lipid metabolism regulation

  • Hwang, Eunmi;Kim, Gye Won;Song, Ki Duk;Lee, Hak-Kyo;Kim, Sung-Jo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.11
    • /
    • pp.1776-1788
    • /
    • 2019
  • Objective: The demands for measures to improve disease resistance and productivity of livestock are increasing, as most countries prohibit the addition of antibiotics to feed. This study therefore aimed to uncover functional feed additives to help enhance livestock immunity and disease resistance, using Acanthopanax sessiliflorus fruit extract (ASF). Methods: ASF was extracted with 70% EtOH, and total polyphenolic and catechin contents were measured by the Folin-Ciocalteu and vanillin assay, respectively. The 3D4/31 porcine macrophage cells ($M{\Phi}$) were activated by phorbol 12-myristate 13-acetate (PMA), and cell survival and growth rate were measured with or without ASF treatment. Flow-cytometric analysis determined the lysosomal activity, reactive oxygen species levels (ROS), and cell cycle distribution. Nuclear factor kappa B ($NF-{\kappa}B$) and superoxide dismutase (SOD) protein expression levels were quantified by western blotting and densitometry analysis. Quantitative polymerase chain reaction was applied to measure the lipid metabolism-related genes expression level. Lastly, the antibacterial activity of 3D4/31 $M{\Phi}$ cells was evaluated by the colony forming unit assay. Results: ASF upregulated the cell viability and growth rate of 3D4/31 $M{\Phi}$, with or without PMA activation. Moreover, lysosomal activity and intracellular ROS levels were increased after ASF exposure. In addition, the antioxidant enzyme SOD2 expression levels were proportionately increased with ROS levels. Both ASF and PMA treatment resulted in upregulation of $NF-{\kappa}B$ protein, tumor necrosis factor $(TNF){\alpha}$ mRNA expression levels, lipid synthesis, and fatty acid oxidation metabolism. Interestingly, co-treatment of ASF with PMA resulted in recovery of $NF-{\kappa}B$, $TNF{\alpha}$, and lipid metabolism levels. Finally, ASF pretreatment enhanced the in vitro bactericidal activity of 3D4/31 $M{\Phi}$ against Escherichia coli. Conclusion: This study provides a novel insight into the regulation of $NF-{\kappa}B$ activity and lipid metabolism in $M{\Phi}$, and we anticipate that ASF has the potential to be effective as a feed additive to enhance livestock immunity.

Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model

  • Choi, Jonghye;Kim, Hyejin;Choi, Jinhee;Oh, Seung Min;Park, Jeonggue;Park, Kwangsik
    • Environmental Analysis Health and Toxicology
    • /
    • v.29
    • /
    • pp.4.1-4.10
    • /
    • 2014
  • Objectives Effects of nanoparticles including zinc oxide nanoparticles, titanium oxide nanoparticles, and their mixtures on skin corrosion and irritation were investigated by using in vitro 3D human skin models ($KeraSkin^{TM}$) and the results were compared to those of an in vivo animal test. Methods Skin models were incubated with nanoparticles for a definite time period and cell viability was measured by the 3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide method. Skin corrosion and irritation were identified by the decreased viability based on the pre-determined threshold. Results Cell viability after exposure to nanomaterial was not decreased to the pre-determined threshold level, which was 15% after 60 minutes exposure in corrosion test and 50% after 45 minutes exposure in the irritation test. IL-$1{\alpha}$ release and histopathological findings support the results of cell viability test. In vivo test using rabbits also showed non-corrosive and non-irritant results. Conclusions The findings provide the evidence that zinc oxide nanoparticles, titanium oxide nanoparticles and their mixture are 'non corrosive' and 'non-irritant' to the human skin by a globally harmonized classification system. In vivo test using animals can be replaced by an alternative in vitro test.

Antioxidative Activity of Cherry Tomato (Lycopersicon lycopersicum var. cerasiforme) Extracts and Protective Effect for $H_2O_2$-induced Inhibition of Gap Junction Intercellular Communication

  • Kim, Su-Na;Choi, Won-Hee;Ahn, Ji-Yun;Ha, Tae-Youl
    • Food Science and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.630-635
    • /
    • 2009
  • This study was performed to analyze various antioxidants, to evaluate the antioxidative activities, and to measure the protective effect for gap junction intercellular communication (GJIC) to assess the functional potency of the cherry tomato. The ascorbic acid, lycopene, and ${\beta}-carotene$ were measured at $503.4{\pm}9.6$, $39.7{\pm}1.5$, and $7.4{\pm}0.3$ mg/100 g d.w., and ${\alpha}-$, ${\beta}+{\gamma}-$, ${\delta}-tocopherol$ contents were measured at $8.3{\pm}0.1$, $1.7{\pm}0.0$, and $0.1{\pm}0.0$ mg/100 g d.w., respectively. Cherry tomato extract using hexane/acetone/EtOH (2:1:1, CTE) exhibited a ABTS radical scavenging activity with an $IC_{50}$ value of $48.83{\pm}0.30\;{\mu}g/mL$. The cherry tomato protected against the inhibition of GJIC induced by $H_2O_2$ in WB-F344 rat liver epithelial cells, and the reduction in phosphorylated Cx43 was most clearly correlated with the concentration of CTE. These results demonstrated that the cherry tomato harbors a wealth of potent antioxidants and might be protect human body against the inhibition of the GJIC by toxic components.

Protective effect of dietary oils containing omega-3 fatty acids against glucocorticoid-induced osteoporosis

  • Elbahnasawy, Amr Samir;Valeeva, Emiliya Ramzievna;El-Sayed, Eman Mustafa;Stepanova, Natalya Vladimirovna
    • Journal of Nutrition and Health
    • /
    • v.52 no.4
    • /
    • pp.323-331
    • /
    • 2019
  • Purpose: Glucocorticoids (GCs) are implicated in secondary osteoporosis, and the resulting fractures cause significant morbidity. Polyunsaturated fatty acids (PUFAs) play a vital role in bone metabolism. However, few trials have studied the impact of omega-3 PUFA-containing oils against GC-induced osteoporosis. Therefore, the present study was undertaken to determine whether supplementation with omega-3 PUFA-containing dietary oils such as fish oil, flaxseed oil or soybean oil can impede the development of GC-induced osteoporosis. Methods: The fatty acids (FAs) content of oils was determined using gas chromatography. Male rats were subdivided into 5 groups (8 rats each): normal control (balanced diet), prednisolone control (10 mg/kg prednisolone daily), soybean oil (prednisolone 10 mg/kg + soybean oil 7% w/w), flaxseed oil (prednisolone 10 mg/kg + flaxseed oil 7% w/w), and fish oil (from cod liver; prednisolone 10 mg/kg + fish oil 7% w/w). Results: The study data exhibited a significant depletion in bone mineral density (BMD) and femur mass in the prednisolone control compared to the normal control, accompanied with a marked decrease in the levels of plasma calcium and 1,25-$(OH)_2$-vitamin $D_3$, and elevated levels of C-terminal telopeptide (CTX), tumor necrosis factor-alpha (TNF-${\alpha}$) and malondialdehyde (MDA). Supplementation with fish oil, soybean oil or flaxseed oil helped to improve plasma calcium levels, and suppress oxidative stress and inflammatory markers. Additionally, bone resorption was suppressed as reflected by the decreased CTX levels. However, fish oil was more effective than the other two oils with a significant improvement in BMD and normal histological results compared to the normal control. Conclusion: This study demonstrated that supplementation with dietary oils containing omega-3 PUFAs such as fish oil, soybean oil or flaxseed oil can play a role in the prevention of bone loss and in the regulation of bone metabolism, especially fish oil which demonstrated a greater level of protection against GC-induced osteoporosis.

Modified Synthetic Method & Cytotoxic Activity of Ranunculin and Protoanemonin (Ranunculin및 Protoanemonin의 합성법의 개선 및 세포독성 평가)

  • 방성철;김용;안병준
    • YAKHAK HOEJI
    • /
    • v.48 no.2
    • /
    • pp.117-121
    • /
    • 2004
  • Ranunculin, a potent cytotoxic component of P. koreana, was synthesized by reacting (s)-(-)-5-(hydroxymethyl)-2(5H)-furanone with 2,3,4,6-tetra-O-acetyl-$\alpha$-D-glucopyranosyl bromide and successive removal of the acetyl protecting group by 0.5 M HCl/MeOH. A new deacetylation process of the intermediate tetraacetylranunculin was deviced giving a yield of 83% of ranunculin. Protoanemonin, the cytotoxic structural moiety of ranunculin, was synthesized by dehydration of (s)-(-)-5-hydroxymethyl-2(5H)-furanone. Ranunculin showed a moderate cytototoxic activity against A-549 (ED$_{50}$=7.53 $\mu\textrm{g}$/$m\ell$), NIH3T (ED$_{50}$=13.6$\mu\textrm{g}$/$m\ell$), and SK-OV-3 (ED$_{50}$=17.5 $\mu\textrm{g}$/$m\ell$). Meanwhile, protoanemonin also exhibited moderate cytotoxicity against A-549 (ED$_{50}$=9.38 $\mu\textrm{g}$/$m\ell$), NIH3T (ED$_{50}$=13.8 $\mu\textrm{g}$/$m\ell$), and SK-OV-3 (ED$_{50}$=15.1 $\mu\textrm{g}$/$m\ell$). It was found that both of the synthetic products showed a potenter cytotoxicity against A-549.ainst A-549.

Administration of red ginseng ameliorates memory decline in aged mice

  • Lee, Yeonju;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.39 no.3
    • /
    • pp.250-256
    • /
    • 2015
  • Background: It has been known that ginseng can be applied as a potential nutraceutical for memory impairment; however, experiments with animals of old age are few. Methods: To determine the memory enhancing effect of red ginseng, C57BL/6 mice (21 mo old) were given experimental diet pellets containing 0.12% red ginseng extract (approximately 200 mg/kg/d) for 3 mo. Young and old mice (4 mo and 21 mo old, respectively) were used as the control group. The effect of red ginseng, which ameliorated memory impairment in aged mice, was quantified using Y-maze test, novel objective test, and Morris water maze. Red ginseng ameliorated age-related declines in learning and memory in older mice. In addition, red ginseng's effect on the induction of inducible nitric oxide synthase and proinflammatory cytokines was investigated in the hippocampus of aged mice. Results: Red ginseng treatment suppressed the production of age-processed inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-${\alpha}$, and interleukin-$1{\beta}$ expressions. Moreover, it was observed that red ginseng had an antioxidative effect on aged mice. The suppressed glutathione level in aged mice was restored with red ginseng treatment. The antioxidative-related enzymes Nrf2 and HO-1 were increased with red ginseng treatment. Conclusion: The results revealed that when red ginseng is administered over long periods, age-related decline of learning and memory is ameliorated through anti-inflammatory activity.

Cellular Protective Effects of Peanut Sprout Root Extracts (땅콩나물 뿌리 추출물의 세포 보호 효과)

  • Jo, Na Rae;Park, Chan Il;Park, Chae Won;Shin, Dong Han;Hwang, Yoon Chan;Kim, Yong Hyun;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.183-189
    • /
    • 2012
  • In this study, the cellular protective effect and antioxidative property of peanut sprout root extracts were investigated. Cellular protective effects of peanut sprout root extracts on the rose-bengal sensitized photohemolysis of human erythrocytes were investigated. The ethyl acetate fraction of extracts exhibited a cellular protective effect in a concentration dependent manner. Particularly, the aglycone fraction of extracts showed prominent cellular protective effects in a concentration range (5~50 ${\mu}g/mL$). They are more effective than that of (+)-${\alpha}$-tocopherol, known as a lipid peroxidation chain blocker. Reactive oxygen species (ROS) scavenging activities ($OSC_{50}$) of peanut sprout root extracts on ROS generated in $Fe^{3+}$-EDTA/$H_2O_2$ system were investigated using the luminol-dependent chemiluminescence assay. The ethyl acetate fraction of extracts ($OSC_{50}$; 1.59 ${\mu}g/mL$) showed a similar ROS scavenging activity compare with that of L-ascorbic acid (1.50 ${\mu}g/mL$), known as a strong antioxidant. On the other hand, the order of free radical (1,1-diphenyl-2-picrylhydraxyl, DPPH) scavenging activity ($FSC_{50}$) was (+)-${\alpha}$-tocopherol > 80% MeOH extract > aglycone fraction > ethyl acetate fraction. These results indicate that peanut sprout root extracts can function as an antioxidant in biological systems, particularly skin exposed to solar UV radiation by scavenging $^1O_2$ and other ROS, and to protect cellular membranes against ROS.