• Title/Summary/Keyword: $1,\

Search Result 588,940, Processing Time 0.215 seconds

Preparation of 1.1-nm Tobermorite from Starting Zeolite Mineral (Zeolite광물을 출발물질로 한 1.1-nm Tobermorite의 제조)

  • Yim, Going
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.3
    • /
    • pp.274-283
    • /
    • 1999
  • 1.1-nm tobermorite의 수열합성에 SiO2원으로 zeolite광물을 출발물질로하여 소석회와 Ca(Si+Al)의 몰비 0.8~1.0로 150$^{\circ}$~23$0^{\circ}C$,8~48시간 동ㅇㄴ 포화증기압하에서 수열반응을 시킨 결과, 반응초기단계에서 tobermorite가 생성되었고, 고결정성 1.1-nm tobermorite의 최적합성조건은 0.8몰, 23$0^{\circ}C$, 48시간이었다. 출발물질중 Al의 존재로 tobermorite는 Ca/(Si+Al)몰비 0.8이 1.0보다 결정화가 급속히 이루어지고 있으나 Al를 함유치 않은 석영의 경우에는 Ca/Si 몰비 1.0이 0.8에서 보다 결정화가 빠르게 진행되었다 1.1-nm tobermorite는 $700^{\circ}C$에서 일주일간 가열처리하여도 저면간격이 변화하지 않는 열적거동이 이상형임을 보여주었다. 특히 출발물질중 Al의 존재는 1.1-nm tobermorite의 결정화와 안정화를 촉진시켜주며 Al이온이 tobermorite구조중의 Si이온과 동형치환을 한다.

  • PDF

Flow Characteristics of Ejector Driven Pipe According to the Changes of Diameter Ratio and End Position (이젝터 구동관로의 직경비와 끝단의 위치 변화에 따른 유동특성)

  • Kim, Noh Hyeong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.45-51
    • /
    • 2016
  • This study conducted CFD analysis on the mean velocity vector of distribution of the ejector driven pipe while changing the inlet velocity to 1 m/s at the diameter ratio of diffuser of 1:3, 1:2.25, 1:1.8 with the end position of driven pipe at 1, 1.253, 1.333, 1.467 respectively, which used $k-{\varepsilon}$/High Reynolds Number for the turbulence model, SIMPLE method for the analysis algorithm, and PIV experiment to verify the CFD analysis. As a result of the CFD analysis the optimum diameter ratio of ejector driven pipe was 1:3, the optimum end position of driven pipe was 1.333 for the diameter ratio of 1:3, 1:2.25, 1:1.8 and the PIV experiment obtained the same result as the CFD analysis. Therefore, the numerical analysis of the flow characteristics of ejector can be used for the optimum design implementation on ejector system.

The Dielectric and Piezoelectric Properties of (Pb1-1.5xLax)(Ti1-yMny) System ((Pb1-1.5xLax)(Ti1-yMny)O3계의 유전 및 압전성질)

  • 맹성재;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.321-328
    • /
    • 1988
  • The sintering phenomena, electrical resistivity, dielectric and piezoelectric properties of lead titanate ceramics modified by the partial substitution of La for Pb and Mn for Ti, (Pb1-1.5xLax)(Ti1-yMny)O3 ceramics, have been investigated. In (Pb1-1.5xLax)(Ti1-yMny)O3 system, with increasing lanthanum content, the realtive bulk density increased, but the Curie point and tetragonality (c/a) decreased. The tetragonal-to-cubic phase transition boundary existed in the range of 0.20

  • PDF

Analysis of a Sphingosine 1-phosphate Receptor $hS1P_3$ in Rat Hepatoma Cells

  • Im, Dong-Soon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.3
    • /
    • pp.139-142
    • /
    • 2002
  • To examine intracellular signaling of human $S1P_3\;(hS1P_3),$ a sphingosine 1-phosphate (S1P) receptor in plasma membrane, $hS1P_3$ DNA was transfected into RH7777 rat hepatoma cell line, and the inhibition of forskolin-induced cAMP accumulation and activation of MAP kinases by S1P were tested. In $hS1P_3$ transformants, S1P inhibited forskolin-induced activation of adenylyl cyclase activity by about 80% and activated MAP kinases in dose-dependent and pertussis-toxin (PTX) sensitive manners. In oocytes expressing $hS1P_3$ receptor, S1P evoked $Cl^-$ conductance. These data suggested that PTX-sensitive G proteins are involved in $hS1P_3-mediated$ signaling, especially the positive action of S1P in cell proliferation. The potential advantages of rat hepatoma cells for the research of sphingosine 1-phosphate receptor are discussed.

A Study on the Tannin Treatment of Silk Fabrics(IV) -Change of Properties in Tannin Treated Fabrics- (견의 탄닌처리에 관한 연구(IV) -탄닌처리포의 물성변화-)

  • 설정화;최석철
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.16-23
    • /
    • 1999
  • This study was made to investigate the effects of mimosa tannin and tannic acid on change of properties and photodegradation of silk fabrics according to tannin concentration and irradiation time. The results were as follows. 1. As concentration of tannin increased, thickness, fabric count and stiffness showed no difference. But tensile strength were increased, and elongation were decreased. 2. When concentration of tannin is high, tannin adhered to surface of fabrics. 3. fR absorption bands of untreated silk fabric appeared at $3400cm^{-1},\; 1640cm^{-1},\;1445cm^{-1},\;1235cm^{-1},\;and\;675cm^{-1}$, but those of silk fabric treated with tannic acid appeared at $1710cm^{-1}\;and\;3400cm^{-1}$ by treatment of mimosa tannin, respectively. IR absorption bands of photoirradiated silk fabrics appeared at $3400cm^{-1},\;3280cm^{-1},\;2960cm^{-1},\;2920cm^{-1},\; 1720cm^{ -1},\;1380cm^{-1},\;1280cm^{-1},\;1120cm^{-1},\;and\;1070cm^{-1}$. But those bands were decreased at the silk fabrics treated with mimosa tannin and tannic acid.

  • PDF

Synthesis of 1,3-Dioxolan-2-yliden Derivatives and Their Antifungal Activities (1,3-Dioxolan-2-yliden 유도체들의 합성과 항진균 활성)

  • 김영섭;김우정;김범태;박노균;박창식
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.566-571
    • /
    • 1999
  • (1H-1,2,4-Triazolyl) methy-4-(sub). phenyl-5-methyl-1,3-dioxolan-2-yliden (3) derivatives were synthesized and tested for their antifungal activities. The designed compounds with a 1,2,4-triazolylmethyl group at the 4-position of 1,3-dioxolan-2-yliden moiety were synthesized by reaction of difluorinated olefins(2) with (2R, 3R)-2-(2,4-dihalophenyl)-1-(1H-1,2,4-triazol-l-yl) butane-2,3-diol (1). These compounds were tested for in vitro antifungal activities against 16 fungi species. The MIC values were determined by the micro broth dilution method. In general, 1,3-dioxolan-2-yliden derivatives showed antifungal activities in vitro. Among them, (4R, 5R)-4-(2,4-difluorophenyl)-5-methyl-2-[1-(3,4-methylenedioxypheny)meth-ylidene)-1,3-dioxolon-4-yl(1H-1,2,4-triazollyl)methane showed superior antifungal activities to fluconazol and ketoconazol.

  • PDF

1,2,4-Triazole Fused Heterocycles; Part 3. Preparation of 1-(1-Phenylethenyl)-5-(N-substituted amino)-1,2,4-triazoles and 4H-1,2,4-Triazolo[1,5-c][1,3,5]oxadiazines

  • 이기정;이유석;송동혁
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.11
    • /
    • pp.1037-1042
    • /
    • 1995
  • The reaction of acetophenone 1-ureidoethylidenehydrazones 6 with a mixture of triphenylphosphine, carbon tetrachloride, and triethylamine in dichloromethane provides a general route to 1-(1-phenylethenyl)-5-(N-substituted amino)-1,2,4-triazoles 11 via the electrocyclization of the expected azino carbodiimide intermediates 9 to give the resonance stabilized azomethine imine 10a followed by a proton abstraction from the methyl group by amide anion. However, the same reaction of benzaldehyde 1-ureidoethylidenehydrazones 5 was unsuccessful. Under the same conditions, the reactions of benzaldehyde 1-N-acylureidoethylidenehydrazones 7 or acetophenone 1-N-acylureidoethylidenehydrazones 8 afforded 4H-1,2,4-triazolo[1,5-c][1,3,5]oxadiazines 16 or 17 via the zwitterionic species 15, or a [4+2] intramolecular cycloaddition from the carbodiimide intermediates 14, respectively.

THE GROWTH OF BLOCH FUNCTIONS IN SOME SPACES

  • Wenwan Yang;Junming Zhugeliu
    • Bulletin of the Korean Mathematical Society
    • /
    • v.61 no.4
    • /
    • pp.959-968
    • /
    • 2024
  • Suppose f belongs to the Bloch space with f(0) = 0. For 0 < r < 1 and 0 < p < ∞, we show that $$M_p(r,\,f)\,=\,({\frac{1}{2\pi}}{\int_{0}^{2\pi}}\,{\mid}f(re^{it}){\mid}^pdt)^{1/p}\,{\leq}\,({\frac{{\Gamma}(\frac{p}{2}+1)}{{\Gamma}(\frac{p}{2}+1-k)}})^{1/p}\,{\rho}{\mathcal{B}}(log\frac{1}{1-r^2})^{1/2},$$ where ρʙ(f) = supz∈ⅅ(1 - |z|2)|f'(z)| and k is the integer satisfying 0 < p - 2k ≤ 2. Moreover, we prove that for 0 < r < 1 and p > 1, $${\parallel}f_r{\parallel}_{B_q}\,{\leq}\,r\,{\rho}{\mathcal{B}}(f)(\frac{1}{(1-r^2)(q-1)})^{1/q},$$ where fr(z) = f(rz) and ||·||ʙq is the Besov seminorm given by ║f║ʙq = (∫𝔻 |f'(z)|q(1-|z|2)q-2dA(z)). These results improve previous results of Clunie and MacGregor.

A Study on a Calculation Method of Economical Intake Water Depth in the Design of Head Works (취입모의 경제적 계획취입수심 산정방법에 대한 연구)

  • 김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.20 no.1
    • /
    • pp.4592-4598
    • /
    • 1978
  • The purpose of this research is to find out mathemetically an economical intake water depth in the design of head works through the derivation of some formulas. For the performance of the purpose the following formulas were found out for the design intake water depth in each flow type of intake sluice, such as overflow type and orifice type. (1) The conditional equations of !he economical intake water depth in .case that weir body is placed on permeable soil layer ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } { Cp}_{3 }L(0.67 SQRT { q} -0.61) { ( { d}_{0 }+ { h}_{1 }+ { h}_{0 } )}^{- { 1} over {2 } }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { dcp}_{3 }L+ { nkp}_{5 }+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ] =0}}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }+ { 1} over {2 } C { p}_{3 }L(0.67 SQRT { q} -0.61)}}}} {{{{ { ({d }_{0 }+ { h}_{1 }+ { h}_{0 } )}^{ - { 1} over {2 } }- { { 3Q}_{1 } { p}_{ 6} { { h}_{1 } }^{- { 5} over {2 } } } over { { 2m}_{ 2}m' SQRT { 2gs} }+[ LEFT { b+ { 4C TIMES { 0.61}^{2 } } over {3(r-1) }+z( { d}_{0 }+ { h}_{0 } ) RIGHT } { p}_{1 }L }}}} {{{{+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 } L+dC { p}_{4 }L+(2 { z}_{0 }+m )(1-s) { L}_{d } { p}_{7 }]=0 }}}} where, z=outer slope of weir body (value of cotangent), h1=intake water depth (m), L=total length of weir (m), C=Bligh's creep ratio, q=flood discharge overflowing weir crest per unit length of weir (m3/sec/m), d0=average height to intake sill elevation in weir (m), h0=freeboard of weir (m), Q1=design irrigation requirements (m3/sec), m1=coefficient of head loss (0.9∼0.95) s=(h1-h2)/h1, h2=flow water depth outside intake sluice gate (m), b=width of weir crest (m), r=specific weight of weir materials, d=depth of cutting along seepage length under the weir (m), n=number of side contraction, k=coefficient of side contraction loss (0.02∼0.04), m2=coefficient of discharge (0.7∼0.9) m'=h0/h1, h0=open height of gate (m), p1 and p4=unit price of weir body and of excavation of weir site, respectively (won/㎥), p2 and p3=unit price of construction form and of revetment for protection of downstream riverbed, respectively (won/㎡), p5 and p6=average cost per unit width of intake sluice including cost of intake canal having the same one as width of the sluice in case of overflow type and orifice type respectively (won/m), zo : inner slope of section area in intake canal from its beginning point to its changing point to ordinary flow section, m: coefficient concerning the mean width of intak canal site,a : freeboard of intake canal. (2) The conditional equations of the economical intake water depth in case that weir body is built on the foundation of rock bed ; (a) in the overflow type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{5 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{1 }(1-s) SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L+ { nkp}_{5 }}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0 }}}} (b) in the orifice type of intake sluice, {{{{ { zp}_{1 } { Lh}_{1 }- { { { 3Q}_{1 } { p}_{6 } { h}_{1 } }^{- {5 } over {2 } } } over { { 2m}_{2 }m' SQRT { 2gs} }+[ LEFT { b+z( { d}_{0 }+ { h}_{0 } )RIGHT } { p}_{1 }L+(1+ SQRT { 1+ { z}^{2 } } ) { p}_{2 }L}}}} {{{{+( { 2z}_{0 }+m )(1-s) { L}_{d } { p}_{7 } ]=0}}}} The construction cost of weir cut-off and revetment on outside slope of leeve, and the damages suffered from inundation in upstream area were not included in the process of deriving the above conditional equations, but it is true that magnitude of intake water depth influences somewhat on the cost and damages. Therefore, in applying the above equations the fact that should not be over looked is that the design value of intake water depth to be adopted should not be more largely determined than the value of h1 satisfying the above formulas.

  • PDF

A Study on the Use of Active Protocol Using the Change of Pitch and Rotation Time in PET/CT (PET/CT에서 Pitch와 Rotation Time의 변화를 이용한 능동적인 프로토콜 사용에 대한 연구)

  • Jang, Eui Sun;Kwak, In Suk;Park, Sun Myung;Choi, Choon Ki;Lee, Hyuk;Kim, Soo Young;Choi, Sung Wook
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.17 no.2
    • /
    • pp.67-71
    • /
    • 2013
  • Purpose: The Change of CT exposure condition have a effect on image quality and patient exposure dose. In this study, we evaluated effect CT image quality and SUV when CT parameters (Pitch, Rotation time) were changed. Materials and Methods: Discovery Ste (GE, USA) was used as a PET/CT scanner. Using GE QA Phantom and AAPM CT Performance Phantom for evaluate Noise of CT image. Images are acquired by using 24 combinations that four stages pitch (0.562, 0.938, 1.375, 1.75:1) and six stages X-ray tube rotation time (0.5s-1.0s). PET images are acquired using 1994 NEMA PET Phantom ($^{18}F-FDG$ 5.3 kBq/mL, 2.5 min/frame). For noise test, noise are evaluated by standard deviation of each image's CT numbers. And then we used expectation noise according to change of DLP (Dose Length Product) to experimental noise ratio for index of effectiveness. For spatial resolution test, we confirmed that it is possible to identify to 1.0 mm size of the holes at the AAPM CT Performance Phantom. Finally we evaluated each 24 image's SUV. Results: Noise efficiency were 1.00, 1.03, 1.01, 0.96 and 1.00, 1.04, 1.02, 0.97 when pitch changes at the QA Phantom and AAPM Phantom. In case of X-ray tube rotation time changes, 0.99, 1.02, 1.00, 1.00, 0.99, 0.99 and 1.01, 1.01, 0.99, 1.01, 1.01, 1.01 at the QA Phantom and AAPM Phantom. We could identify 1.0 mm size of the holes all 24 images. Also, there were no significant change of SUV and all image's average SUV were 1.1. Conclusion: 1.75:1 pitch is the most effective value at the CT image evaluation according to pitch change and It doesn't affect to the spatial resolution and SUV. However, the change of rotation time doesn't affect anything. So, we recommend to use the effective pitch like 1.75:1 and adequate X-ray tube rotation time according to patient size.

  • PDF