• Title/Summary/Keyword: ${SO_4}^{2-}$ 이온농도

Search Result 382, Processing Time 0.031 seconds

Ionic Equilibria in $ZnSO_4-Na_2SO_4-H_2SO_4-NaOH-H_2O$ System ($ZnSO_4-Na_2SO_4-H_2SO_4-NaOH-H_2O$계의 이온 평형)

  • 이만승;박현주;나춘기
    • Resources Recycling
    • /
    • v.11 no.1
    • /
    • pp.19-25
    • /
    • 2002
  • For $ZnSO_4$-$Na_2$$SO_4$-$H_2$ $SO_4$-$NaOH-H_2$O system, pH of solutions with different electrolyte concentrations was measured at $25^{\circ}C$ and ionic equilibria were analyzed by using K-value method. Activity of water and activity coefficients of solutes were calculated by Pitzer equation. The equilibrium concentration and activity coefficients of solutes were calculated from initial experimental conditions. At high ionic strength of 4m, the pH values calculated were in good agreement with those measured. In the experimental ranges of ionic strength of solution from 3.5 to 4.3 m, the mean activity coefcient of $ZnSO_4$calculated agreed well with those obtained from literature.

Changes in Ion Balance and Individual Ionic Contributions to EC Reading at Different Renewal Intervals of Nutrient Solution under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Peppers (Capsicum annum L. 'Fiesta') (EC 기준 파프리카 순환식 수경재배에서 양액 교체 주기에 따른 양액 중의 이온 균형 및 각 이온의 EC 기여도 변화)

  • Ahn, Tae-In;Son, Jung-Eek
    • Horticultural Science & Technology
    • /
    • v.29 no.1
    • /
    • pp.29-35
    • /
    • 2011
  • Individual ion concentrations and ionic contributions to EC reading in the circulated nutrient solution are the important factors to be considered for stable EC-based closed-loop soilless culture. This study was conducted to determine appropriate ion-analysis intervals of the circulated nutrient solutions based on ion concentration, ion balance, and ion electrical conductivity under different renewal intervals in EC-based nutrient control systems for sweet peppers (Capsicum annum L. 'Fiesta') in early growth stage. Average node numbers of the plants were 13 and 18 when the experiment started and finished, respectively, and three plants were grown in each rockwool slab. Four different renewal intervals of circulated nutrient solutions such as 1, 2, 3, and 4 weeks were used as treatment. Nutrient solutions were supplied to the plants based on integrated radiation. Drainage was collected into drain tanks after irrigation ended in the day and then mixed with fresh water until the EC reaches 2.69 $dS{\cdot}m^{-1}$. The replenished nutrient solution was supplied to the plants in the next day. Ion concentrations of the individual ions periodically analyzed in the circulated nutrient solutions showed no significant differences among the treatments during the experimental period. Ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$, $NO_3{^-}$, ${SO_4}^{2-}$, ${PO_4}^{3-}$, and $Cl^-$ varied within 5-8, 11-14, 2.0-2.7, 0.5-0.6, 14-19, 4-5, 1-4, and 0.3-0.5 $meq{\cdot}L^{-1}$, respectively. Ion balance showed a consistent tendency over all the treatments and especially $K^+$ : $Ca^{2+}$ and ${SO_4}^{2-}$ : ${PO_4}^{3-}$ played great roles in the cation and anion balances in the nutrient solutions, respectively. Activity coefficients of ions such as $K^+$, $NO_3{^-}$, and $H_2PO_4{^-}$ varied within 0.8-0.9 and those of $Ca^{2+}$, $Mg^{2+}$, ${SO_4}^{2-}$ varied within 0.5-0.6, showing little changes with time. Ionic contributions of $K^+$ and $NO_3{^-}$ to EC reading were the greatest followed by $Ca^{2+}$, ${SO_4}^{2-}$, and $Mg^{2+}$ in the order. From the results, we thought that allowable ranges in ion concentration, ion balance, and subsequent individual ionic contributions to EC reading would be obtained within 4-week renewal interval of nutrient solution in EC-based closed-loop soilless culture for sweet pepper plants.

Influence of SO42- Ions Concentration on Sulfate Resistance of Cement Mortars (시멘트 모르타르의 황산염침식 저항성에 대한 SO42- 이온 농도의 영향)

  • Lee, Seung Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.757-764
    • /
    • 2008
  • This paper was conducted to evaluate the durability of cement mortars exposed to varying concentrations of sodium sulfate for up to 540 days. Three types of cement mortars, namely OPC, SRC and SGC, were exposed to four sodium sulfate solutions with concentrations of 4225, 8450, 16900 and 33800 ppm of ${SO_4}^{2-}$ ions at ambient temperature. The sulfate deterioration was evaluated by measuring compressive strength and linear expansion of mortar specimens. Experimental results indicated that the maximum deterioration was noted in OPC mortar specimens in highly concentrated sulfate solution. In particular, the $C_3A$ content in cements plays a critical role in resisting expansion due to sodium sulfate attack. Additionally, the beneficial effect of GGBS was clearly observed showing a superior resistance against sodium sulfate attack, because of its lower permeability. Another important observation was that the parameters for the evaluation of deterioration degree are greatly dependent on the products formed by sulfate attack.

Effect of Soluble Salts and Their Concentrations on Water Absorption of Polyacrylamide Hydrogel (무기염의 종류 및 농도가 Polyacrylamide 고흡수성 수지의 수분 흡수에 미치는 영향)

  • Wang, Hyun-Jin;Choi, Jong-Myung;Lee, Jong-Suk
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.196-202
    • /
    • 2005
  • This research was conducted to determine the amount of water absorbed by a polyacrylamide hydrogel such as Stocksorb C (STSB), effect of salts on inhibition in hydration of STSB, and the hydrogel effects on changes of nutrient concentration in external solution. Absorption of deionized water by STSB reached a maximum of 180 $mL{\cdot}g^{-1}$. Monovalent soluble salts such as $KH_2PO_4,\;KNO_3$, and $(NH_4)_2SO_4$ reduced absorption of the hydrogel, but the degrees of inhibition in absorption were similar in three kinds of salts. Twenty milliequivalents per liter of $Ca_{2+}\;or\;Mg_{2+}$ reduced water absorption of STSB to $14\%$ compared to those of deionized water. Solution absorption was consistently lower in the presence of divalent cations than in the presence of the monovalent cations. But the absorption was unaffected by the uncharged salt such as urea in all concentrations tested. The final $K^+\;and\;NH_4^+-N$ concentrations of the solution remaining after absorption by STSB was higher than those of the initial solution. The soaking of STSB to full strength of Hoagland solution resulted in increase of $NO_3^--N,\;H_2PO_4^-\;and\;SO_4^{2-}$ concentrations in external solution compared to initial solution, reaching 5,300, 250 and 1,500 $mL{\cdot}g^{-1}$, respectively, at 24 hrs after soaking.

Studies on the Releasing Effect of Cerium in Calcium Analysis by Atomic Absorption Spectrometry (원자흡수 분광법에 의한 칼슘분석에서 세륨의 해방효과에 관한 연구)

  • Kee Chae Park;Hee Seon Choi;Soo Han Kwon
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.129-136
    • /
    • 1985
  • In the atomic absorption spectrometry using an air-acetylene flame, the interferences of Zr, Sn, Al, Sb, $SO_4^{2-},\;VO_3^-,\;and\;SiO_3^{2-}$, on the calcium absorption and the repression of this interference by the addition of cerium have been studied. The interference by Zr, Sn, Al, Sb, $SO_4^{2-},\;VO_3^-,\;and\;SiO_3^{2-}$ existed as the same concentration as calciurn ($3.0 {\times} 10^{-4}$M) in the sample solution are completely released by the addition of cerium twice as much as interfering cation. The interferences by the mixed interfering cations (Zr, Sn, Al and Sb) and by the mixed interfering anions ($SO_4^{2-},\;VO_3^-,\;and\;SiO_3^{2-}$) are larger than by each interfering cation and anion, and the releasing effect by cerium ($1.5 {\times} 10^{-2}$M) is effective up to some degree of the concentration of mixed interfering cations and of mixed interfering anions. The releasing effect by cerium to the mixed solution of interfering cations and anions is applicable to quite wide range of concentration.

  • PDF

Comparison with Acidity and Chemical Properties of Dew at Three Forest Stands(Mt. Nam in Seoul; Shingal, Yongin; Hangdong, Pyungchang) (3개 산림지역의 이슬의 산성도 및 화학적 특성의 비교(서울, 용인, 평창 지역을 중심으로))

  • Kim Young-Chai;Chung Dong-Jun;Kim Hong-Ryul
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.2 no.2
    • /
    • pp.31-40
    • /
    • 2000
  • This study was carried out to compare pH and chemical properties of dew in three forest stands(Mt. Nam-Seoul, Shingal-Yongin, Hangdong-Pyungchang)from May, 1998 to September, 1999. The results of this study were as follows; The acidity of dew in Seoul, which has a metropolitan environment, measured pH5.57 $\pm$ 0.41. The highest acidity was measured in Yongin(pH5.50 $\pm$ 0.96), while pH in Pyungchang was 6.36 $\pm$ 0.57. Ion concentration in Pyungchang was lower than in other two regions, with a similar tendency of seasonal cation changes to those in Seoul and Yongin. Anion changes in Pyungchang, however, was inconsistent with those in other two regions. Although analyses of correlation coefficients showed that there was no significant correlation between overall ion concentrations and pH of dew, there was highly significant correlations between some cations and anions in Seoul and Yon gin, leading a suggestion that those ions were coupled from one source.

  • PDF

Short Term Runoff Characteristics Change of Stream Water Quality with Different Rainfall Events in Planted Coniferous Forest (침엽수 인공림에서 강우사상별 계류수 수질의 유출특성 변화)

  • Kim, Jaehoon;Choi, Hyung Tae;Yoo, Jae Yun
    • Korean Journal of Environment and Ecology
    • /
    • v.29 no.6
    • /
    • pp.917-922
    • /
    • 2015
  • This study was carried out to investigate solutes concentration change with respect to discharge change in coniferous forest experiment watershed in Gyeonggi-do, Korea. From 2005 to 2008. Precipitation, discharge, solutes has been analyzed from 23 precipitation events. The results showed that low API induced low discharge. $NH_4{^+}$, $K^+$, and $Ca^{2+}$ were indicated by clockwise and $Cl^-$ and $NO_3{^-}$ were represented by counterclockwise hysteresis loop. ${SO_4}^{2-}$, $Na^+$, $Mg^{2+}$ showed no hysteresis loop pattern. $Cl^-$, $Na^+$, $NH_4{^+}$ was relatively constant due to groundwater during precipitation, $NO_3{^-}$ was increased due to soil water compared to early precipitation. $Cl^-$, ${SO_4}^{2-}$, $Na^+$, $Mg^{2+}$, $Ca^{2+}$ was diluted with respect to increased discharge and $NO_3{^-}$ was diluted in early precipitation and then increased in the end. $NO_3{^-}$ and $Ca^{2+}$ eluviated in early precipitation. This characteristics was presumed by the effect of API, discharge and ground water.

Analysis of Changes in Ion Concentration with Time and Drainage Ratio under EC-based Nutrient Control in Closed-loop Soilless Culture for Sweet Pepper Plants (Capsicum annum L. 'Boogie') (EC 기준 순환식 파프리카 수경재배에서 시간 경과 및 배액율에 따른 이온농도 변화 분석)

  • Ahn, Tae-In;Shin, Jong-Wha;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2010
  • Nutrient uptake by plants and drainage ratio in culture beds can affect ion balance and concentrations of nutrient solutions in electrical conductivity (EC)-based closed-loop soilless culture. This study was conducted to analyze ion concentration changes with time and drainage ratio under EC-based nutrient control in closed-loop soilless culture for sweet pepper plants (Capsicum annum L. 'Boogie'). At first experiment, ion concentrations of the nutrient solution were periodically analysed while collected drainage was being reused by mixing with fresh nutrient solution at a dilution rate of EC $2.2\;dSm^{-1}$. Changes in ion concentrations of $K^+$, $Ca^{2+}$, $Mg^{2+}$, $NO_3^-$, $SO_4^{2-}$, and $PO_4^{3-}$ were 1.13, 5.35, 0.92, 0.9, 1.10, $0.19\;meq{\cdot}L^{-1}$, respectively. Ion balance such as $K^+$ : $Ca^{2+}$ and $SO_4^{2-}$ : $NO_3^-$ were mainly affected during the recirculation of nutrient solution. At second experiment, ion concentrations and EC of drainage were compared before and after replenishment under different four drainage ratios of 7%, 16%, 39%, and 51%. Ion ratios of the recirculated nutrient solutions such as $K^+$ : $Ca^{2+}$ for cation and $SO_4^{2-}$ : $NO_3^-$ for anion were investigated. ECs of drainage decreased with increase of drainage ratio and each ion concentration showed the same trends as EC did. Ion balances in drainage with drainage ratio were a little different from each other, but each ratio could be corrected by replenishment process. The ion balance at 7% drainage ratio was closest to initial ratio and followed by 16%, 51%, and 39% in the order. Ion balance such as $K^+$ : $Ca^{2+}$ and $NO_3^-$ : $PO_4^{3-}$ were mainly affected the correction process.

Characterization and source apportionment by factor analysis of water soluble ions in atmospheric particles in Cheonan, Korea (천안시 대기 입자 중 수용성 이온성분의 계절적 특성 및 요인분석을 통한 오염기여도 평가)

  • Oh, Se-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.2
    • /
    • pp.1020-1026
    • /
    • 2011
  • Seasonal characteristics of water soluble ions in atmospheric particles in Cheonan were studied between 2008 and 2009. $Na^+$, $NH_4^+$ and $NO_3^-$, $SO_4^{2-}$ were the principle cations and anions in both coarse and fine particles. Water soluble ions occupied 24.4%(spring), 33.2%(summer), 40.7%(fall), and 39.6%(winter) of the total mass of coarse particles. In fine particles, 43.0%(spring), 59.7%(summer), 55.4%(fall), and 53.2%(winter) of mass were occupied by water soluble ions. From the factor analysis, 2 and 4 factors were extracted for water soluble ions in coarse and fine particles, respectively. 70.33% of water ions in the coarse particles were estimated from the natural source, but 66.01% in the fine particles were from the anthropogenic source.

Comparison of Weight and Inorganic Ion Concentrations in $PM_{2.5}$ collected from Background, Urban and Industrial Complex Area (배경, 도시 및 산단 지역에서 채취한 $PM_{2.5}$의 중량 및 무기 이온농도의 비교)

  • 정경미;김희갑
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.229-230
    • /
    • 2003
  • 최근에 대기오염이 심각해지면서 입자상 물질(particulate matter)의 농도가 증가하고 있으며, 이로 인해 대기의 시정뿐만 아니라 건강상의 문제를 일으킬 수 있다는 보고가 늘어나고 있다. 또한 미세 입자는 화학적 조성에 의해 인체에 미치는 영향이 증가할 수 있다. 중량농도 및 무기이온의 농도는 대부분 겨울철에 높으며, 특히 음이온 중에서는 SO$_4$$^{2-}$ , NO$_3$$^{-}$이, 양이온 중에서는 NH$_4$$^{+}$ 이온이 중량농도 중 차지하는 비율이 높다. (중략)

  • PDF