• Title/Summary/Keyword: ${NH_4}^+$

Search Result 4,434, Processing Time 0.032 seconds

Solid-solid phase transitions of organic-inorganic perovskite hybrids (유기-무기 페로브스카이트 복합소재의 고체-고체 상전이)

  • Huh, Young-Duk;Kim, Ji-Hyun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.86-91
    • /
    • 2005
  • The layered structure of organic-inorganic perovskite hybrids, $(C_nH_{2n+1}NH_3)_2CuC1_4$ (n = 6, 8, 10, 12) have synthesized. In $(C_nH_{2n+1}NH_3)_2CuC1_4$ compounds, the long-chain protonated alkylammonium ions as tilted bilayer type are inserted into perovskite-type layers of corner sharing $CuCl_6$ octahedron. Three solid phases have been characterized in the perovskite layered compound $(C_nH_{2n+1}NH_3)_2CuC1_4$ using HT-XRD and DSC. The $(C_nH_{2n+1}NH_3)_2CuC1_4$ compounds shows solid-solid phase transitions with stepwise increasing of the layer distance. Three different structures are explained by the conformational change of the long-chain protonated alkylammonium ions.

Investigation on the Stability of Uric Acid and its Isotope (1,3-15N2) in Ammonium Hydroxide for the Absolute Quantification of Uric Acid in Human Serum

  • Lee, Sun Young;Kim, Kwonseong;Oh, Han Bin;Hong, Jongki;Kang, Dukjin
    • Mass Spectrometry Letters
    • /
    • v.8 no.3
    • /
    • pp.59-64
    • /
    • 2017
  • In clinical diagnosis, it's well known that the abnormal level of uric acid (UA) in human body is implicated in diverse human diseases, for instance, chronic heart failure, gouty arthritis, diabetes, and so on. As a primary method, an isotope dilution mass spectrometry (IDMS) has been used to obtain the accurate quantity of UA in blood or serum and also develop the certificated reference material (CRM) so as to provide a SI-traceability to clinical laboratories. Due to the low solubility of UA in water, an ammonium hydroxide ($NH_4OH$) has been considered as a promising solvent to increase the solubility of UA that enables the preparation of both UA and its isotope standard solution for next IDMS-based absolute quantification. But, because of using this $NH_4OH$ solvent, it gives rise to the unwanted degradation of UA. In this study, we sought to optimize condition for the stability of UA in $NH_4OH$ solution by varying the mole ratios of UA to $NH_4OH$, followed by ID-LC-MRM analysis. In addition, we also inspected minutely the effect of the storage temperatures. Additionally, we also performed the quantitative analysis of UA in the KRISS serum certificated reference material (CRM, 111-01-02A) with diverse mixing ratios of UA to $NH_4OH$ and then compared those values to its certification value. Based on our experiments, adjusting the mole ratio of 1/2 ($UA/NH_4OH$) with the storage temperature of $-20^{\circ}C$ is an effective way to secure both the solubility and stability of UA in $NH_4OH$ solution for next IDMS-based quantification of UA in serum.

A Study on The Reaction Characteristics of Desulfurization and Denitrification in Non-Thermal Plasma Conditions (저온 플라즈마 조건에서 탈황.탈질 반응 특성 연구)

  • 신대현;우제경;김상국;백현창;박영성;조정국
    • Journal of Energy Engineering
    • /
    • v.8 no.1
    • /
    • pp.150-158
    • /
    • 1999
  • 본 연구는 저온플라즈마를 이용하여 배기가스중의 SOx와 NOx를 동시에 처리하는 공정을 개발하는 것으로서, 최적의 반응제 선정과 효율적인 공정의 구성을 위해 SOx, NOx와 반응제와 반응기구를 밝히고자 하였다. 실험은 1.0 N㎥/h의 모사가스를 이용한 기초실험과 20 N㎥/h의 실제 연소가스를 이용한 실험으로 진행되었으며, 반응제로는 NH3와 파리핀계 및 올레핀계 탄화수소를 사용하였다. NH3를 반응제로 한 SO2 제거반응은 비플라즈마 조건에서는 NH4HSO3, 플라즈마 조건에서는 (NH4)2SO4의 생성반응이었고, 두 조건 모두 높은 제거율을 나타냈다. 반응제를 사용하지 않은 플라즈마 조건에서 SO2는 환원반응이 일어나고 O2 농도의 증가는 역반응을 증가시키는 화학평형에 의해 SO2의 제거율이 감소되었다. 플라즈마 조건에서 NO는 O2농도가 낮은 경우는 NO의 환원반응이 주로 일어나고, O2 농도가 높을 경우는 산화반응이 지배적이었다. 올레핀계 탄화수소는 플라즈마 조건에서 NO 산화 반응에 탁월한 효과를 보였을 뿐만 아니라 SO2 제거에도 효과를 보여 최대 40%의 제거율을 나타냈으며, NH3의 사용을 줄일 수 있음을 확인하였다.

  • PDF

Spawning Induction and Egg Development of Surf Clam, Spisula sachalinensis (북방대합, Spisula sachalinensis의 산란유발 및 난발생)

  • Lee, Jeong-Yong;Chang, Young-Jin;Park, Young-Je
    • Journal of Aquaculture
    • /
    • v.9 no.4
    • /
    • pp.419-427
    • /
    • 1996
  • In order to obtain the basic information for seedling production of surf clam, Spisula sachalinensis, spawning induction and egg development were investigated. $NH_4OH$ addition and serotonin injection could induce the spawning in surf clam. Water temperature rising, sperm suspension immersion, UV-ray irradiated seawater and $H_2O_2$ addition less affected on induction of spawning than $NH_4OH$ and serotonin did. On the other hand, males were more sensitive to the treatments than females. The response time to initial spawning in the case of $NH_4OH$ addition was $3\~4$ hours. However in the case of serotonin injection, it was within 5 minutes. The number of eggs released by $NH_4OH$ addition were significantly more than those released by serotonin injection. The serotonin injection induced higher rates of germinal vesicle breakdown than the $NH_4OH$ addition. Fertilizing and hatching rates of the eggs also were the similar results. Eggs of surf clam were demersal isolated eggs and averaging $65.2{\pm}±1.8\;{\mu}m$ in diameter after spawning. Optimum range of water temperature for the development of egg was $15\~20^{\circ}C$, The required time for development of D-shaped larvae was 42 hours at $15^{\circ}C$ and 27 hours at $20^{\circ}C$, respectively.

  • PDF

Assessment of NH4+ and Ca2+ on Acidity Neutralization of Rainwater in Ansung Area (안성지역 강우의 산성도 중화에 미치는 NH4+ 및 Ca2+ 영향 평가)

  • Lee, Jong Sik;Min, Zhu;Park, Baeg-Gyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.356-360
    • /
    • 2000
  • This study was carried out to assess the neutralization ability of $NH_4{^+}$ and $Ca^{2+}$ on the acidity of rainwater in Korea. The rainwater was collected in Ansung area for six months from May to October in 1993, 1994, 1995, 1997, and 1998, respectively. Rainwater were analyzed for chemical composition and their theoretical pH values were calculated. As for the results, the distribution rates of rain at the pH 5.0~5.6 range were high. The equivalent ratio of $SO_4{^2-}/NO_3{^-}$ was decreased since 1994. Theoretical acidity which was calculated by-$log([H^+]+[NH_4{^+}]+[Ca^{2+}])$ was 5.0~12.6 times higher than measured acidity in Ansung area each monitoring year. The monthly difference between measured pH and theoretical pH was lower in July and August than any other month. $NH_4{^+}$ contributed more to the neutralization of rainwater acidity than $Ca^{2+}$. And the neutralization ratio of rainwater acidity by these two ions decreased during the years from 91.8% in 1993 to 88.7% in 1998.

  • PDF

Structures of (4-Nitro-benzylidene)-(3-nitro-phenyl)-amine and trans-Dichlorobis (3-nitroaniline) palladium(II) ((4-Nitro-benzylidene)-(3-nitro-phenyl)-amine 및 trans-Dichlorobis(3-nitroaniline) palladium(II)의 구조)

  • Lee Hee K.;Lee Soon W.
    • Korean Journal of Crystallography
    • /
    • v.16 no.1
    • /
    • pp.6-10
    • /
    • 2005
  • A novel potential linking ligand (4-nitro-benzylidene)-(3-nitro-phenyl)-amine (1) was prepared from 4-nitrobenzaldehyde and 3-nitroaniline by the Schiff-base condensation. From the reaction between 1 and dichlorobis(benzonitrile)palladium (II) $(PdCl_2(NCPh)_2)$, an unexpected product $trans-PdCl_2(NO_2-C_6H_4-NH_2)_2$ (2) was isolated. Compounds 1 and 2 were structurally characterized by X-ray diffraction. In compound 2, the $NH_2$ hydrogen atoms in the 3-nitroaniline ligand participate in intermolecular N-H${\cdot}\;{\cdot}\;{\cdot}\;$Cl hydrogen bonds.

The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO (RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향)

  • Shin, Jung Hun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.200-207
    • /
    • 2020
  • In this study, the effect of calcination temperature on the production of RuTi catalyst in NH3-SCO (selective catalytic oxidation) was investigated. The RuTi catalyst was prepared using the wet impregnation method, and calcined at 400~600 ℃ for 4 h in air condition. The catalysts were named RuTi x00 where x00 means the calcination temperature. According to XRD (X-Ray diffraction), TEM (transmission electron microscope), H2-TPR (H2-temperature programmed reduction) analyses, RuTi x00 catalysts displayed that the dispersion of active metal decreased via increasing the calcination temperature. The catalysts with low dispersion showed a decrease in the surface adsorption oxygen species (Oβ) and NH3 adsorption amount via XPS, and NH3-TPD analyses. Therefore, the RuTi 400 catalyst was well dispersed in the active metal on TiO2 surface, and also, the NH3 removal efficiency was excellent.

A Study on the Effect of Low-Temperature Activity on Vanadium Catalysts (Vanadium계 촉매의 NH3-SCR 저온 활성 영향 연구)

  • Yeo, Jonghyeon;Hong, Sungchang
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.321-328
    • /
    • 2020
  • This experiment compared V/W/TiO2 and V/Mo/TiO2 catalysts that were used for commercial catalysts. The effects of SCR reactions on low-temperature activity were studied. NH3-TPD, DRIFT, and H2-TPR analysis, alongside O2-on/off experiments, were conducted to identify the effects of NH3 acid sites and oxygen participating in the SCR reaction, which had a significant impact on the NH3-SCR reaction. The effect on activity was analyzed at 250 ℃, a high temperature of reaction activity, and 180 ℃, which showed significant activity degradation. In NH3 involved in the SCR reaction at 250 ℃, B and L acid sites contributed to the reaction. In particular, the B acid site was found to have significantly participated in the reaction and affected the NH3-SCR activity, which was reduced at 180 ℃ to affect the activity degradation. Also, atmospheric oxygen contributed to the SCR reaction, causing the active property to facilitate reaction activity at 250 ℃. However, oxygen did not comprise the reaction at 180 ℃, indicating a drop inactivity. Therefore, the B acid site was reduced, and the activity was judged to be degraded due to failure to share in the reaction and low effects by atmospheric oxygen.

Effect of Precipitator and Quantity on the Formation of Fe3(PO4)2 (Fe3(PO4)2 생성에 미치는 침전제와 첨가량의 영향)

  • An, Suk-Jin;Lee, Sun-Young;Oh, Kyoung-Hwan;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.21 no.11
    • /
    • pp.587-591
    • /
    • 2011
  • The effect of the precipitator (NaOH, $NH_4OH$) and the amount of the precipitator (150, 200, 250, 300 ml) on the formation of $Fe_3(PO_4)_2$, which is the precursor used for cathode material $LiFePO_4$ in Li-ion rechargeable batteries was investigated by the co-precipitation method. A pure precursor of olivine $LiFePO_4$ was successfully prepared with coprecipitation from an aqueous solution containing trivalent iron ions. The acid solution was prepared by mixing 150 ml $FeSO_4$(1M) and 100 ml $H_3PO_4$(1M). The concentration of the NaOH and $NH_4OH$ solution was 1 M. The reaction temperature (25$^{\circ}C$) and reaction time (30 min) were fixed. Nitrogen gas (500 ml/min) was flowed during the reaction to prevent oxidation of $Fe^{2+}$. Single phase $Fe_3(PO_4)_2$ was formed when 150, 200, 250 and 300 ml NaOH solutions were added and 150, 200 ml $NH_4OH$ solutions were added. However, $Fe_3(PO_4)_2$ and $NH_4FePO_4$ were formed when 250 and 300 ml $NH_4OH$ was added. The morphology of the $Fe_3(PO_4)_2$ changed according to the pH. Plate-like lenticular shaped $Fe_3(PO_4)_2$ formed in the acidic solution below pH 5 and plate-like rhombus shaped $Fe_3(PO_4)_2$ formed around pH 9. For the $NH_4OH$, the pH value after 30 min reaction was higher with the same amount of additions of NaOH and $NH_4OH$. It is believed that the formation mechanism of $Fe_3(PO_4)_2$ is quite different between NaOH and $NH_4OH$. Further investigation on this mechanism is needed. The prepared samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the pH value was measured by pH-Meter.

Chemical Composition of Fine Aerosol Associated with Visibility Degradation in Seoul Metropolitan Area in 1994 (1994년 수도권 지역에서의 시정과 미세 입자상물질 화학조성과의 관계해석)

  • 한진석;김병곤;김신도
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.377-387
    • /
    • 1996
  • This study was carried out to monitor the visibility including measurement and analysis of the various parameters such as particle size distribution, chemical composition, and meteorotical conditions to understand the characteristics and causes of this phenomenon. According to the analysis of intensive sampling, $SO_4^{2-}, NO-3^-, Cl^-, NH_4^+$ ion concentration increased together with the mass concentration around 1 $\mu$m in the case of low visibility. $(NH_4)_2SO_4, NH_4NO_3$, and $NH_4Cl$ were thought to be the major components of fine particles. The statistical analysis showed that the scattering effect of particle was 81.2%, the absorption effect was 14.9%. Therefore, these effects were the major factors to reduce the visibility. In conclusion, the visibility was reduced by the fine particle of sulfate (18.6%), nitrate (14.2%), organic carbon (10.8%), element carbon (25.8%), and residual (24.8%) during this study.

  • PDF