DOI QR코드

DOI QR Code

The Effect of Calcination Temperature of RuTi Catalysts on the Reaction Activity of NH3-SCO

RuTi 촉매의 소성온도가 NH3-SCO 반응활성에 미치는 영향

  • Shin, Jung Hun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Hong, Sung Chang (Department of Environmental Energy Engineering, Kyonggi University)
  • 신중훈 (경기대학교 일반대학원 환경에너지공학과) ;
  • 홍성창 (경기대학교 환경에너지공학과)
  • Received : 2020.02.11
  • Accepted : 2020.03.18
  • Published : 2020.04.10

Abstract

In this study, the effect of calcination temperature on the production of RuTi catalyst in NH3-SCO (selective catalytic oxidation) was investigated. The RuTi catalyst was prepared using the wet impregnation method, and calcined at 400~600 ℃ for 4 h in air condition. The catalysts were named RuTi x00 where x00 means the calcination temperature. According to XRD (X-Ray diffraction), TEM (transmission electron microscope), H2-TPR (H2-temperature programmed reduction) analyses, RuTi x00 catalysts displayed that the dispersion of active metal decreased via increasing the calcination temperature. The catalysts with low dispersion showed a decrease in the surface adsorption oxygen species (Oβ) and NH3 adsorption amount via XPS, and NH3-TPD analyses. Therefore, the RuTi 400 catalyst was well dispersed in the active metal on TiO2 surface, and also, the NH3 removal efficiency was excellent.

본 연구에서는, NH3-SCO (selective catalytic oxidation) 반응에서 RuTi 촉매 제조 시 소성온도에 따른 영향을 확인하였다. RuTi 촉매는 습윤 함침법을 이용하여 제조되었고, 공기 분위기에서 400~600 ℃로 4 h 동안 소성되었다. 촉매는 RuTi x00로 표기되었으며, x00는 소성온도를 의미한다. XRD, TEM, H2-TPR 분석에 따르면, RuTi x00 촉매는 소성온도가 증가할수록 활성금속의 분산도가 감소하는 것을 나타내었다. XPS, NH3-TPD 분석을 통하여, 낮은 분산도를 갖는 촉매는 표면 흡착 산소 종(Oβ) 및 NH3 흡착량이 감소하는 특성을 나타내었다. 따라서 RuTi 400 촉매는 TiO2 표면에 활성금속이 가장 잘 분산되었으며, NH3 제거 효율이 가장 우수하였다.

Keywords

References

  1. Y. Wu, B. Gu, J. W. Erisman, S. Reis, Y. Fang, X. Lu, and X. Zhang, PM2.5 pollution is substantially affected by ammonia emissions in china, Environ. Pollut., 218, 86-94 (2016). https://doi.org/10.1016/j.envpol.2016.08.027
  2. J. X. Warner, R. R. Dickerson, Z. Wei, L. L. Strow, Y. Wang, and Q. Liang, Increased atmospheric ammonia over the world's major agricultural areas detected from space, Geophys. Res. Lett., 44, 2875-2884 (2017). https://doi.org/10.1002/2016GL072305
  3. P. Li, R. Zhang, N. Liu, and S. Royer, Efficiency of Cu and Pd substitution in Fe-based perovskites to promote $N_2$ formation during $NH_3$ selective catalytic oxidation ($NH_2$-SCO), Appl. Catal. B: Environ., 203, 174-188 (2017). https://doi.org/10.1016/j.apcatb.2016.10.021
  4. X. Zhang, H. Wang, Z. Wang, and Z. Qu, Adsorption and surface reaction pathway of NH3 selective catalytic oxidation over different Cu-Ce-Zr catalysts, Appl. Surf. Sci., 447, 40-48 (2018). https://doi.org/10.1016/j.apsusc.2018.03.220
  5. C. M Hung, Synthesis, characterization and performance of CuO/$La_2O_3$ composite catalyst for ammonia catalytic oxidation, Powder Technol., 196, 56-61 (2009). https://doi.org/10.1016/j.powtec.2009.07.001
  6. Z. Wang, Z. Qu, X. Quan, Z. Li, H. Wang, and R. Fan, Selective catalytic oxidation of ammonia to nitrogen over CuO-$CeO_2$ mixed oxide prepared by surfactant-templated method, Appl. Catal. B: Environ., 134-135, 153-166 (2013). https://doi.org/10.1016/j.apcatb.2013.01.029
  7. R. Q. Long and R. T. Yang, Selective catalytic oxidation of ammonia to nitrogen over $Fe_2O_3-TiO_2$ prepared with a Sol-Gel method, J. Catal., 207, 158-165 (2002). https://doi.org/10.1006/jcat.2002.3545
  8. N. I. Il'chenko and G. I. Golodets, Catalytic oxidation of ammonia, J. Catal., 39, 57-72 (1975). https://doi.org/10.1016/0021-9517(75)90282-1
  9. J. G. Amores, V. S. Escribano, G. Ramis, and G. Busca, An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxide, Appl. Catal. B: Environ., 13, 45-58 (1997). https://doi.org/10.1016/S0926-3373(96)00092-6
  10. S. M. Lee, H. H. Lee, and S. C. Hong, Influence of calcination temperature on Ce/$TiO_2$ catalysis of selective catalytic oxidation of $NH_3$ to $N_2$, Appl. Catal. B: Environ., 470, 189-198, (2014). https://doi.org/10.1016/j.apcata.2013.10.057
  11. M. Jiang, B. Wang, Y. Yao, Z. Li, X. Ma, S. Qin, and Q. Sun, A comparative study of $CeO_2-Al_2O_3$ support prepared with different methods and its application on $MoO_3/CeO_2-Al_2O_3$ catalyst for sulfur-resistant methanation, Appl. Surf. Sci., 285, 267-277 (2013). https://doi.org/10.1016/j.apsusc.2013.08.049
  12. H. Wang, P. Ning, Q.L. Zhang, X. Liu, T.X. Zhang, J. Hu, and L. Y. Wang, Effect of different $RuO_2$ contents on selective catalytic oxidation of ammonia over $RuO_2-Fe_2O_{26}$ catalysts, J. Fuel Chem. Tech., 47, 215-223 (2019). https://doi.org/10.1016/S1872-5813(19)30011-8
  13. H. Ma and W. F. Schneider, Structure- and temperature-dependence of Pt-catalyzed ammonia oxidation rates and selectivities, ACS Catal., 9, 2407-2414 (2019). https://doi.org/10.1021/acscatal.8b04251
  14. F. Wang, G. He, B. Zhang, M. Chen, X. Chen, C. Zhang, and H. He, Insights into the activation effect of $H_2$ pretreatment on Ag/$Al_2O_3$ catalyst for the selective oxidation of ammonia, ACS Catal., 9, 1437-1445 (2019). https://doi.org/10.1021/acscatal.8b03744
  15. X. Cui, J. Zhou, Z. Ye, H. Chen, L. Li, M. Ruan, and J. Shi, Selective catalytic oxidation of ammonia to nitrogen over mesoporous CuO/$RuO_2$ synthesized by co-nanocasting-replication method, J. Catal., 270, 310-317 (2010). https://doi.org/10.1016/j.jcat.2010.01.005
  16. D. P. Sobczyk, A. M. Jong, E. J. M. Hensen, and R. A. Santen, Activation of ammonia dissociation by oxygen on platinum sponge studied with positron emission profiling, J. Catal., 219, 156-166 (2003). https://doi.org/10.1016/S0021-9517(03)00191-X
  17. Y. Li and J. N. Amor, Selective $NH_3$ oxidation to $N_2$ in a wet stream, Appl. Catal. B: Environ., 13, 131-139 (1997). https://doi.org/10.1016/S0926-3373(96)00098-7
  18. X. Cui, L. Chen, Y. Wang, H. Chen, W. Zhao, Y. Li, and J. Shi, Fabrication of hierarchically porous $RuO_2$-CuO/Al-$ZrO_3$ composite as highly efficient catalyst for ammonia-selective catalytic oxidation, ACS Catal., 4, 2195-2206 (2014). https://doi.org/10.1021/cs500421x
  19. G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_3$ over MnOx-$CeO_2$ catalyst, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  20. C. L. Wang, W. S. Hwangm, H. L. Chu, H. J. Lin, H. H. Ko, and M. C. Wang, Kinetics of anatase transition to rutile $TiO_2$ from titanium dioxide precursor powders synthesized by a sol-gel process, Ceram. INT., 42, 13136-13143 (2016). https://doi.org/10.1016/j.ceramint.2016.05.101
  21. N. Aranda-Perez, M. P. Ruiz, J. Echave, and J. Faria, Enhanced activity and stability of Ru-$TiO_2$ rutile for liquid phase ketonization, Appl. Catal. A: Gen., 531, 106-118 (2017). https://doi.org/10.1016/j.apcata.2016.10.025
  22. J. M. G. Carballo, E. Finocchio, S. Garcia, S. Rojas, M. Ojeda, G. Busca, and J. L. G. Fierro, Support effects on the structure and performance of ruthenium catalysts for the Fischer-Tropsch synthesis, Catal. Sci. Technol., 1, 1013-1023 (2011). https://doi.org/10.1039/c1cy00136a
  23. L. Li, L. Qu, J. Cheng, J. Li, and Z. Hao, Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts, Appl. Catal. B: Environ., 88, 224-231 (2009). https://doi.org/10.1016/j.apcatb.2008.09.032
  24. D. B. Ruan, P. T. Liu, Y. C. Chiu, K. Z. Kan, M. C. Yu, T. C. Chien, Y. H. Chen, P. Y. Kuo, and S. M. Sze, Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition, Thin Solid Films, 660, 885-890 (2018). https://doi.org/10.1016/j.tsf.2018.02.036