• Title/Summary/Keyword: ${LiNi_y}{Mn_{2-y}{O_4}$

Search Result 98, Processing Time 0.026 seconds

Material Life Cycle Assessment of Graphene 2wt% Added to Li1.6Ni0.35Mn0.65O2 Half-Cell (그래핀 2wt%를 첨가한 Li1.6Ni0.35Mn0.65O2 Half-Cell의 물질 전 과정 평가)

  • CHO, KYOUNG-WON;LEE, YOUNG-HWAN;HAN, JEONG-HEUM;YU, JAE-SEON;HONG, TAE-WHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.1
    • /
    • pp.132-137
    • /
    • 2020
  • Lithium secondary batteries have become an important power source for portable electronic devices such as cellular phones, laptop computers. Presently, commercialized lithium-ion batteries use a LiCoO2 cathode. However, due to the high cost and environmental problems resulting from cobalt, an intensive search for new electrode materials is being actively conducted. Recently, solid solution LiMn1-xNixO2 have become attractive because of high capacity and enhanced safety at high voltages over 4.5 V. The Li1.6Ni0.35Mn0.65O2 compounds were conventionally prepared by a sol-gel method, which can produce the layered Li-Ni-Mn-O compounds with a high homogeneity. And by adding a graphene 2wt% the first charge-discharge voltage profiles was increased over Li1.6Ni0.35Mn0.65O2 compound. Also, the variation s of the discharge capacities with cycling showed a higher capacity retention rater. In this study, material lifecycle evaluation was performed to analyze the environmental impact characteristics of Li1.6Ni0.35Mn0.65O2 & graphene 2wt% half-cell manufacturing process. The software of material life cycle assessment was Gabi. Through this, environmental impact assessment was performed for each process. The environmental loads induced by Li1.6Ni0.35Mn0.65O2 & graphene 2wt% synthesis process were quantified and analyzed, and the results showed that the amount of power had the greatest impact on the environment.

Electrodeposition of Mn-Ni Oxide/PEDOT and Mn-Ni-Ru Oxide/PEDOT Films on Carbon Paper for Electro-osmotic Pump Electrode

  • Baek, Jaewook;Shin, Woonsup
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • $MnO_2$, a metal oxide used as an electrode material in electrochemical capacitors (EDLCs), has been applied in binary oxide and conducting polymer hybrid electrodes to increase their stability and capacitance. We developed a method for electrodepositing Mn-Ni oxide/PANI, Mn-Ni oxide/PEDOT, and Mn-Ni-Ru oxide/PEDOT films on carbon paper in a single step using a mixed bath. Mn-Ni oxide/PEDOT and Mn-Ni-Ru oxide/PEDOT electrodes used in an electro-osmotic pump (EOP) have shown better efficiency compared to Mn-Ni oxide and Mn-Ni oxide/PANI electrodes through testing in water as a pumping solution. EOP using a Mn-Ni-Ru oxide/PEDOT electrode was also tested in a 0.5 mM $Li_2SO_4$ solution as a pumping solution to confirm the effect of the $Li^+$ insertion/de-insertion reaction of Ruthenium oxide on the EOP. Experimental results show that the flow rate increases with the increase in current in a 0.5 mM $Li_2SO_4$ solution compared to that obtained when water was used as a pumping solution.

The Structural and Electrochemical Properties of Li[Ni0.6-xBaxCo0.1Mn0.3]O2 (x = 0, 0.01) by Barium Doping (Barium 도핑에 따른 Li[Ni0.6-xBaxCo0.1Mn0.3]O2(x=0, 0.01) 의 구조 분석 및 전기화학적 특성)

  • Jang, Byeong-Chan;Yoo, Gi-Won;Yang, Su-Bin;Min, Song-Gi;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.222-228
    • /
    • 2014
  • Ni-rich system $Li[Ni_{1-x-y}Co_xMn_y]O_2$ of lithium secondary battery cathode material keep a high discharge capacity. However, by the Ni content increases, there is a problem that the electrochemical properties and stability of the structure are reduced. In order to solve these problems, research for positive ion doping is performed. The one of the cathode material, barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01), was synthesized by the precursor, $Ni_{0.6}Co_{0.1}Mn_{0.3}(OH)_2$, from the co-precipitation method. The barium doped materials have studied the structural and electrochemical properties. The analysis of structural properties, results of X-ray diffraction analysis, and those results confirmed the change of the lattice from the binding energy in the structure by barium doping. Increased stability of the layered structure was observed by $I_{(006)}+I_{(102)}/I_{(101)}$(R-factor) ratio decrease. we expected that the electrochemical characteristics are improved. 23 mAh/g discharge capacity of barium-doped $Li[Ni_{0.6-x}Ba_xCo_{0.1}Mn_{0.3}]O_2$ (x=0.01) electrode is higher than discharge capacity of $Li[Ni_{0.6}Co_{0.1}Mn_{0.3}]O_2$ due to decrease overvoltage. And, through the structural stability was confirmed that improved the cycle characteristics. We caused a reduction in charge transfer resistance between the electrolyte and the electrode was confirmed that the C-rate characteristics are improved.

Recent Development of 5 V Cathode Materials for Lithium Rechargeable Batteries

  • Kim Hyun-Soo;Periasamy Padikkasu;Moon Seong-In
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • This paper deals with the recent development of high-voltage cathode materials of mono- and di- metal ions substituted spinel $LiMn_2O_4$ for lithium batteries. $LiCu_xMn_{2-x}O_4(0{\leq}x{\leq}0.5)$ shows reversible intercalation/deintercalation in two potential regions, $3.9\~43\;and\;4.8-5.0V$ and stable electrochemical cycling behavior but with low capacity. $LiNi_{0.5}Mn_{1.5}O_4$ obtained by a sol-gel process delivers a capacity of 127mAh $g^{-1}$ on the first cycle and sustains a value of 124 mAh $g^{-1}$ even after the 60th cycle. The $Li_xCr_yMn_{2-y}O_4(0{\leq}x{\leq}0.5)$ solid-solutions exhibit enhanced specific capacity, larger average voltage, and improved cycling behaviors for low Cr content. $LiCr_yMn_{2-y}O_4$ presents a reversible Li deintercalation process at 4.9V, whose capacity is proportional to the Cr content in the range of $0.25{\leq}x{\leq}0.5$ and delivers higher capacities. $LiM_yCr_{0.5-y}Mn_{1.5}O_4(M=Fe\;or\;Al)$ shows that the capacity retention is lowered compared with lithium manganate. The cumulative capacities obtainable with Al-substitutted materials are less than those with Fe-substituted materials. $LiCr_xNi_{0.5-x}Mn_{1.5}O_4(x=0.1)$ delivers a high initial capacity of 1$152mAh\;g^{-1}$ with excellent cycleability.

Cathode Characteristics of Co3(PO4)2-Coated [Co0.1Ni0.15Li0.2Mn0.55]O2 for Lithium Rechargeable Batteries (Co3(PO4)2로 표면코팅한 Li[Co0.1Ni0.15Li0.2Mn0.55]O2의 리튬 2차전지용 양극재 특성 )

  • Lee, Sang-Hyo;Kim, Kwang-Man;Koo, Bon-Keup
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • To prepare the high-capacity cathode material with improved electrochemical performances, nanoparticles of $C0_3(PO_4)_2$ were coated on the powder surface of $Li[Co_{0.1}Ni_{0.15}Li_{0.2}Mn_{0.55}]O_2$, which was already synthesized by simple combustion method. The coated powders after the heat treatment at >$700^{\circ}C$ surely showed well-structured crystalline property with nanoscale surface coating layer, which was consisted of $LiCOPO_4$ phase formed from the reaction bwtween $CO_3(PO_4)_2$ and lithium impurities. In addition, cycle performance was particularly improved by the $CO_3(PO_4)_2$-coating for the cathode material for lithium rechargeable batteries.

Analyses on the Physical and Electrochemical Properties of Al2O3 Coated LiCoO2 (리튬이차전지용 양극 활물질(LiCoC2)의 표면처리의 특성 분석 및 전기화학적 특성 고찰)

  • Chang, Youn-Han;Choi, Sei-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.184-189
    • /
    • 2007
  • The importance of secondary battery industry is getting excited according to the development of battery industry as a high efficiency energy supplier of electronic machine of mobile information such as mobile phone, lap-top computer, PDA. It is rasing the interest about security of safety and high efficiency of cathode material for main part of secondary lithium battery. The cathode material which has been used like $LiCoO_2,\;LiMn_2O_4,\;LiNi_xCo_yMn_zO_2,\;LiNi_xCo_yM_zO_2$ (M=Al, Zr, Mg etc.,) the most typical material is $LiCoO_2$. But it is studying the development of substitute such as efficiency amelioration of $LiCoO_2$, thetiary element, olivine element because of the capacity of $LiCoO_2$, the matter of security; especially the betterment of efficiency, security research of safety has been actively processed in domestic and overseas about surface coating treatment of active cathode which is using oxide ($M_xO_3$). This study analyses side effect of battery according to increase of surface treatment, formation of precipitation for reagent condensation, non-reagent residue of oxide ($M_xO_3$) which is remains during the surface treatment of $LiCoO_2$; conducts study of new process, the consideration of the electrochemical property to improve oxide solution of mixing rate, mixture of surface treatment, dryness, calcinations conditionetc.

Preparation and Cyclic Performance of Li1.2(Fe0.16Mn0.32Ni0.32)O2 Layered Cathode Material by the Mixed Hydroxide Method

  • Karthikeyan, K.;Nam, K.W.;Hu, E.Y.;Yang, X.Q.;Lee, Y.S.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.1995-2000
    • /
    • 2013
  • Layered $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ was prepared by the mixed hydroxide method at various temperatures. Xray diffraction (XRD) pattern shows that this material has a ${\alpha}-NaFeO_2$ layered structure with $R{\bar{3}}m$ space group and that cation mixing is reduced with increasing synthesis temperature. Scanning electron microscopy (SEM) reveals that nano-sized $Li_{1.2}(Fe_{0.16}Mn_{0.32}Ni_{0.32})O_2$ powder has uniform particle size distribution. X-ray absorption near edge structure (XANES) analysis is used to study the local electronic structure changes around the Mn, Fe, and Ni atoms in this material. The sample prepared at $700^{\circ}C$ delivers the highest discharge capacity of 207 $mAhg^{-1}$ between 2-4.5 V at 0.1 $mAcm^{-2}$ with good capacity retention of 80% after 20 cycles.

Synthesis and Electrochemical Performance of Ni-rich NCM Cathode Materials for Lithium-Ion Batteries (리튬이온전지 양극활물질 Ni-rich NCM의 합성과 전기화학적 특성)

  • Kim, Soo Yeon;Choi, Seung-Hyun;Lee, Eun Joo;Kim, Jeom-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.20 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • Layered Ni-rich NCM cathode materials $Li[Ni_xCo_{(1-x)/2}Mn_{(1-x)/2}]O_2$ ($x{\geq}0.6$) have advantages of high energy density and cost competitive over $LiCoO_2$. The discharge capacity of NCM increases proportionally to the Ni contents. However, there is a problem that it is difficult to realize the stable electrochemical performance due to cation mixing. In this study, synthesis conditions for the layered Ni-rich NCMs are investigated to achieve deliver the ones having good electrochemical performances. Synthesis parameters are atmosphere, lithium source, synthesis time, synthesis temperature and Li/M (M=transition metal) ratio. The degree of cation mixing gets worse as the Ni content is increased from $Li[Ni_{0.6}Co_{0.2}Mn_{0.2}]O_2$ (NCM6) to $Li[Ni_{0.8}Co_{0.1}Mn_{0.1}]O_2$ (NCM8). It is confirmed that higher level of cation mixing affects negatively on the electrochemical performance of NCMs. Optimum synthesis conditions are explored for NCMx (x=6, 7, 8) in order to reduce the cation mixing. Under optimized conditions for three representative NCMx, a high initial discharge capacity and a good cycle life are obtained for $180mAh{\cdot}g^{-1}$, 96.2% (50 cycle) in NCM6, $187mAh{\cdot}g^{-1}$, 94.7% (50 cycle) in NCM7, and $201mAh{\cdot}g^{-1}$, 92.7% (50 cycle) in NCM8, respectively.

Properties of charge/discharge in synthesis method or substituting transition element for Li-Mn Oxide (전이금속 치환 및 합성방법에 따른 Li-Mn 산화물의 충방전 특성)

  • Jee, Mi-Jung;Choi, Byung-Hyun;Lee, Dae-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.46-46
    • /
    • 2007
  • There has been rapid progress in the portable electronics industry. which has led to a great increase for a demand of portable, lightweight power sources. Lithium 2'nd batteries have met these demand. and many studies on the cahtod materials for the lithium 2,nd batteries have been reported during the last decade. Possible candidates for the cathode materials for lithium 2,nd batteries are $LiCoO_2$, $LiNiO_2$, and $LiMn_2O_4$. Currently $LiCoO_2$ is widely used. but $LiMn_2O_4$ is an excellent alternative material in view of its several advantages such a low cost as well as the wasy availability of raw materials and environmental benignity. In this study, find the most suitable synthesis method that satisfied high capacitor and stability cycle character, etc in Li-Mn oxide for 2'nd batteries. And also made an experiment on doping the $LiMn_2O_4$ spinel with a small amount of metal ions has a remarkable effect on the electrochemical properties and characterics of powder, BET, PSA, Porosity, etc.

  • PDF