• Title/Summary/Keyword: ${\varepsilon}$-caprolactone

Search Result 142, Processing Time 0.024 seconds

Mechanical Properties and Antiplasticization Phenomena of Poly(${\varepsilon}$-caprolactone)(PCL)/Poly(vinyl chloride)(PVC) Blends (폴리카프로락톤 (PCL)/폴리염화비닐(PVC) 블렌드의 기계적 성질 및 반가소화 현상)

  • Kim, Wook-Soo;Kim, Il-Hyoung;Kang, Sun-Chul;Mori, Tetsuo;Tsuda, Yusuke;Ha, Ki-Ryong
    • Polymer(Korea)
    • /
    • v.25 no.4
    • /
    • pp.521-527
    • /
    • 2001
  • The miscibility, molecular interaction and tensile properties of the blends of poly (${\varepsilon}$-caprolactone) (PCL) with poly(vinyl chloride) (PVC) have been studied. The measured glass transition temperature values of PCL/PVC blends were found to be well fitted by Fox equation. We found that PCL/PVC blends are amorphous up to 23% PCL content. The blends showed the highest Young's modulus and yield strength at 5% PCL content and the highest tensile strength at 11% PCL content. The blends with low contents of PCL(up to 13%) show increased tensile strength and decreased elongation of PCL/PVC blends. Consequently, the antiplasticization phenomenon is observed in the PCL/PVC blends.

  • PDF

Synthesis and Characterization of Porous Poly(ε-caprolactone)/Silica Nanocomposites (다공성 폴리(ε-카프로락톤)/실리카 복합체의 제조 및 특성평가)

  • Son, Siwon;Choi, Ji-Eun;Cho, Hun;Kang, DaeJun;Lee, Deuk Yong;Kim, Jin-Tae;Jang, Ju-Woong
    • Polymer(Korea)
    • /
    • v.39 no.2
    • /
    • pp.323-328
    • /
    • 2015
  • Poly(${\varepsilon}$-caprolactone) (PCL) nanofibers and PCL/silica membranes were synthesized by sol-gel derived electrospinning and casting, respectively. Smooth PCL nanofibers were obtained from the precursor containing N,N-dimethylformamide (DMF). PCL/silica membranes were prepared by varying the tetraethyl orthosilicate (TEOS) contents from 0 to 40 vol% to investigate the effect of silica addition on mechanical properties and cytotoxicity of the membranes. Although the strength of the membranes decreased from 12 to 8 MPa with increasing the silica content, the strength remained almost constant 7 weeks after dipping in phosphate buffered saline solution (PBS). The strength reduction was attributed to the presence of a patterned surface pores and micro-pores present in the walls between pores. The crystal structure of the membranes was orthorhombic and the crystallite size decreased from 57 to 18 nm with increasing the silica content. From the agar overlay test, the PCL/silica membranes exhibited neither deformation and discoloration nor lysis of L-929 fibroblast cells.

A Comparison of the Effects of Silica and Hydroxyapatite Nanoparticles on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone)/Chitosan Nanofibrous Scaffolds for Bone Tissue Engineering

  • Hokmabad, Vahideh Raeisdasteh;Davaran, Soodabeh;Aghazadeh, Marziyeh;Alizadeh, Effat;Salehi, Roya;Ramazani, Ali
    • Tissue Engineering and Regenerative Medicine
    • /
    • v.15 no.6
    • /
    • pp.735-750
    • /
    • 2018
  • BACKGROUND: The major challenge of tissue engineering is to develop constructions with suitable properties which would mimic the natural extracellular matrix to induce the proliferation and differentiation of cells. Poly(${\varepsilon}$-caprolactone)-poly(ethylene glycol)-poly(${\varepsilon}$-caprolactone) (PCL-PEG-PCL, PCEC), chitosan (CS), nano-silica ($n-SiO_2$) and nano-hydroxyapatite (n-HA) are biomaterials successfully applied for the preparation of 3D structures appropriate for tissue engineering. METHODS: We evaluated the effect of n-HA and $n-SiO_2$ incorporated PCEC-CS nanofibers on physical properties and osteogenic differentiation of human dental pulp stem cells (hDPSCs). Fourier transform infrared spectroscopy, field emission scanning electron microscope, transmission electron microscope, thermogravimetric analysis, contact angle and mechanical test were applied to evaluate the physicochemical properties of nanofibers. Cell adhesion and proliferation of hDPSCs and their osteoblastic differentiation on nanofibers were assessed using MTT assay, DAPI staining, alizarin red S staining, and QRT-PCR assay. RESULTS: All the samples demonstrated bead-less morphologies with an average diameter in the range of 190-260 nm. The mechanical test studies showed that scaffolds incorporated with n-HA had a higher tensile strength than ones incorporated with $n-SiO_2$. While the hydrophilicity of $n-SiO_2$ incorporated PCEC-CS nanofibers was higher than that of samples enriched with n-HA. Cell adhesion and proliferation studies showed that n-HA incorporated nanofibers were slightly superior to $n-SiO_2$ incorporated ones. Alizarin red S staining and QRT-PCR analysis confirmed the osteogenic differentiation of hDPSCs on PCEC-CS nanofibers incorporated with n-HA and $n-SiO_2$. CONCLUSION: Compared to other groups, PCEC-CS nanofibers incorporated with 15 wt% n-HA were able to support more cell adhesion and differentiation, thus are better candidates for bone tissue engineering applications.

Preparation of Porous Poly($\varepsilon$-caprolactone) Filament Via Electrospinning (전기 방사를 이용한 PCL Filament의 제조)

  • 김형준;길명섭;정윤호;김학용;이덕래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.169-170
    • /
    • 2003
  • 최근에 전기방사를 이용한 서브마이크로(submicro) 직경을 가진 섬유로 구성된 부직포 제조에 대한 관심이 집중 되어져 왔다[1,2]. 그러나 지금까지 전기방사기술에 대한 활발한 연구에도 불구하고, 전기방사를 이용하여 필라멘트를 제조한 결과는 보고되지 않았다. 본 실험에서는 전기방사 공정을 기초로 한 복합적인 방사체계를 이용하여 다공성 필라멘트를 제조하고자 한다. (중략)

  • PDF

Poly(lactic acid)/Poly($\varepsilon$ -caprolactone) 블렌드의 열적 특성

  • 윤철수;지동선
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.04a
    • /
    • pp.67-70
    • /
    • 1998
  • 지방족 폴리에스테르계 고분자인 Poly(lactic acid)(PLA)는 생분해성, 생체적합성, 분해물의 비독성, 가공성 등이 우수하여 부러진 뼈의 접합 재료, 약물 조절 방출 재료 및 흡수성 봉합사 등과 같은 의료용 소재로 널리 이용되고 있다[1]. 그러나 PLA는 높은 결정화도로 인해 물성이 brittle하고 분해속도가 느릴 뿐만 아니라 낮은 열 안정성으로 인해 용융 가공할 경우 급격한 분자량의 감소를 유발하여 기계적 특성이 좋지 않은 단점이 있다.(중략)

  • PDF

Preparation and Properties of Poly($\varepsilon$-caprolactone) Nanocapsules Containing Tricrecyl phosphate by Emulsion-diffusion Method (유화확산법을 이용한 트리크리실 포스페이트 폴리입실론카프로락톤 나노캡슐의 제조와 성질)

  • Jeong, Cheon-Hui;Park, Yun-Jeong;Kim, Hye-In;Park, Su-Min
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.10a
    • /
    • pp.69-70
    • /
    • 2008
  • The study has attempted to prepare nanocapsules containing Tricrecyl phosphate by Emulsion-diffusion method. The study has focused on finding a optimum condition for preparering nano capsules and effect on size distribution and surface morphology.

  • PDF

Effect of Morphological variations on the Biodegradability of linear and star shaped PGCL (선형과 스타형 Poly(glycolide-co-$\varepsilon$ -caprolactone)의 형태학적 미세 구조변화가 분해성에 미치는 영향)

  • 조도광;박준욱;임승순;김수현;김영하
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.179-182
    • /
    • 2001
  • 지방족 폴리에스터는 보통 의료용 고분자 및 환경분해성 고분자로 알려져 왔으며, 이에 따라 지방족 폴리에스터와 그의 공중합물, 그리고 다른 상용고분자와의 블렌드들의 분해 메카니즘에 관한 연구 보고가 이루어져 왔다. 일반적으로 결정성 고분자의 분해성은 일차적인 화학구조외에도 결정의 size나 perfactness, 결정화도 또는 배향도와 같은 미세 구조에 의해서도 크게 영향을 받는다. (중략)

  • PDF

Effect of Matrix Viscosity on Clay Dispersion in Preparation of Polymer/Organoclay Nanocomposites

  • Ko, Moon-Bae;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Fibers and Polymers
    • /
    • v.3 no.3
    • /
    • pp.103-108
    • /
    • 2002
  • The viscosity effect of matrix polymer on melt exfoliation behavior of an organoclay in poly($\varepsilon$-caprolactone) (PCL) was investigated. The viscosity of matrix polymer was controlled by changing the molecular weight of poly($\varepsilon$-eaprolactone), the processing temperature, and the rotor speed of a mini-molder. Applied shear stress facilitates the diffusion of polymer chains into the gallery of silicate layers by breaking silicate agglomerates down into smaller primary particles. When the viscosity of PCL is lower, silicate agglomerates are not perfectly broken into smaller primary particles. At higher viscosity, all of silicate agglomerates are broken down into primary particles, and finally into smaller nano-scale building blocks. It was also found that the degree of exfoliation of silicate layers is dependent upon not only the viscosity of matrix but thermodynamic variables.