• Title/Summary/Keyword: ${\varepsilon}$-caprolactone

Search Result 142, Processing Time 0.026 seconds

Preparation and Properties of Poly($\varepsilon$-caprolactone) Nanocapsules Containing Phytoncide Oil by Emulsion-diffusion Method(1) (유화확산법을 이용한 피톤치드오일 함유 폴리입실론카프로락톤 나노캡슐의 제조와 성질(1))

  • Jeong, Cheon-Hee;Kim, Hea-In;Park, Soo-Min
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2008.04a
    • /
    • pp.114-116
    • /
    • 2008
  • Poly(${\varepsilon}$-caprolactone) nanocapsules(nanoPCL) containing phytoncide oil were synthesized by emulsion diffusion method using ethyl acetate as organic solvent. The influence of the degree of hydrolyzation of poly(vinyl acohol) used as an emulsion stabilizer, and the different weight ratio of core material to wall material on the particle size, morphology, and emulsion stability was investigated to design nanocapsules. The encapsulated nanoPCL were characterized by FT-IR spetrometry, Scanning electron microscope, Differential scanning calorimetry, and Thermogravimetry analysis, respectively.

  • PDF

Metal Nanoparticles in the Template of Poly(2-ethyl-2-oxazoline)-block-Poly(${\varepsilon}$-caprolactone) Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Lim, Jin-O;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • The amphiphilic block copolymer (PEtOz-PCL) of poly(2-ethyl-2-oxazoline) (PEtOz) and poly(${\varepsilon}$-caprolactone) (PCL) formed spherical micellar structures with an average diameter of 26 nm in aqueous phase. Au and Pd nanoparticles with an average diameter of $2{\sim}3nm$ were prepared by using the PEtOz-PCL micelle consisting of a PEtOz shell and PCL core. The Au nanoparticles of PEtOz-PCL micelles in aqueous phase could be transferred into organic phase by using n-dodecanethiol. The use of the Pd-NP/PEtOz-PCL micelle as a nanoreactor for Suzuki cross-coupling reaction was investigated.

Preparation of Self-standing Mesoporous Bioactive Glass/biodegradable Polymer Composite thin Films using Water Casting Method (수면전개법을 이용한 메조다공성 생체활성유리-생분해성 고분자 복합체 자립박막의 제조)

  • Yun, Hui-Suk;Yoon, Jun-Jin;Park, Eui-Kyun;Kim, Seung-Eon;Hyun, Yong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.10
    • /
    • pp.631-637
    • /
    • 2008
  • Self-standing mesoporous bioactive glass/poly($\varepsilon$-caprolactone) composite thin films with good molding capability, bioactivity, and biocompatibility in vitro, which may find potential applications in tissue engineering and drug storage, were prepared using a combination of the sol-gel, polymer templating, and water casting method. The thickness of self-standing films was affected by the difference of dielectric constant between distilled water and organic solvent.

Poly-${\varepsilon}$-caprolactone(PCL) / Polyvinyl chloride(PVC) 블렌드의 기계적 성질 및 생분해성

  • Seo, Hae-Jeong;Ha, Gi-Ryong;Gang, Seon-Cheol
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.379-380
    • /
    • 2002
  • Biodegradable polymers have been regarded as a good alternative to solve the plastic waste problems caused by nondegradable synthetic polymers such as polyethylene and polystyrene. In the soil environment, plastics are mainly being used as a mulching film for agricultural purposes. In this research, the miscibility, tensile properties and biodegradation effect of poly-${\varepsilon}$-caprolactone(PCL) with polyvinyl chloride(PVC) have been studied. After 8 weeks of biodegradation, PCL/PVC(9/91) blend surface showed newly formed many holes. Consequently, the antiplasticization phenomenon and biodegradation were observed in the PCL/PVC blends. It was confirmed that a test for general biodegradation condition can be applied to plastic biodegradation in soil.

  • PDF

Effect of matrix viscosity on the melt exfoliation of clay in preparation of poly( $\varepsilon$ -caprolactone)/organoclay nanocomposites (poly( $\varepsilon$ -caprolactone)/organoclay 나노복합체에 있어 용융 박리에 수지 점도가 미치는 영향)

  • Ko, Moon-Bae;Park, Jee-kwon;Jho, Jae-Young;Jo, Won-Ho;Lee, Moo-Sung
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.440-443
    • /
    • 2001
  • Polymer/layered silicate nanocomposites have recently received considerable attention from both academia and industry as an effective way to overcome the shortcomings of conventional polymer. When the silicate layers are exfoliated and randomly distributed in polymer matrix, the nanocomposites exhibit improved mechanical, thermal and barrier properties. (omitted)

  • PDF

Synthesis and Thermal Property of Poly(styrene-g-caprolactone) with Well-defined Structure (분자구조가 제어된 Poly(styrene-g-caprolactone)의 합성 및 그라프트 공중합체의 열적 성질)

  • 오병석;안성국;조창기
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.306-313
    • /
    • 2000
  • Polycaprolactone (PCL) macromer containing terminal methacrylate group was synthesized by ring-opening polymerization. The number average molecular weight of PCL macromer was 11600 g/mole and polydispersity index was 1.09. The synthesized PCL macromer was copolymerized with styrene by stable free radical polymerization using 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), benzoyl peroxide, and well-defined poly(styrene-g-caprolactone)s were synthesized. The synthesized copolymers was characterized by $^1$H-NMR and gel permeation chromatography equipped with multiangle laser light scattering detector. Thermal properties of graft copolymers were investigated by DSC.

  • PDF

Crystallization Behavior of Poly(lactic acid) / Poly($\varepsilon$-caprolactone) Blends (폴리락트산/폴리카프로락톤 블렌드의 결정화 거동)

  • 이종록;천상욱;강호종
    • Polymer(Korea)
    • /
    • v.27 no.4
    • /
    • pp.285-292
    • /
    • 2003
  • The compatibility of poly(lactic acid)/poly($\varepsilon$-caprolactone) (PLA/PCL) blends as a function of blend composition was studied and triphenyl phosphite (TPP) was applied to PLA/PCL blends as a reactive compatibilizer. Especially the effect of compatibility on the crystallization behavior in both PLA/PCL blends and PLA/PCL blends with TPP was considered. PLA/PCL blends were immiscible based on thermal characteristics of PLA/PCL blends and the miscibility was depend upon the blend composition. The enhancement of compatibility was found in PLA/PCL blends with TPP depend upon its content. The rate of crystallization in PLA/PCL blend varied with blend composition. This was understood as the development of nucleation at the interface of PLA-PCL due to the immiscibility. TPP was acting as a compatibilizer as well as an agent for the acceleration of spherulite growth In PLA. As a result, the crystallization rate increased and the size of spherulite became larger than that of PLA/PCL blend without TPP.

Preparation and Characterization of Biodegradable Poly($\varepsilon$-caprolactone)/ Poly(ethylene oxide) Microcapsules Containing Erythromycin (에리트로마이신을 함유한 생분해성 폴리카프로락톤/폴리(에틸렌 옥사이드) 마이크로캡슐의 제조 및 특성)

  • 박수진;김승학;이재락;이해방;홍성권
    • Polymer(Korea)
    • /
    • v.27 no.5
    • /
    • pp.449-457
    • /
    • 2003
  • The purposes of this work were the producing of a biodegradable poly($\varepsilon$-caprolactone) (PCL) / poly(ethylene oxide) (PEO) microcapsule and the analyzing of form and features for the manufacturing conditions which could be observed in a prospective drug delivery systems through drug release. The effects of emulsifier, emulsifier concentration, and stirring rate for the diameter and form of the microcapsules were observed using image analyzer and scanning electron microscope. The role of interfacial adhesion between PCL/PEO and drug was determined by contact angle measurements, and the drug release test of the microcapsules was characterized by UV/vis. spectra. As a result, the microcapsules were made in spherical fonns with a mean particle size of 170 nm∼68 $\mu$m. And the work of adhesion between water and PCL/PEO increased with increasing the content of PEO, probably due to the increased the hydrophilicity. It was also found that the drug release rate from the microcapsules significantly increased with increasing the content of PEO, which could be also attributed to the increasing of the hydrophilic groups or the degree of adhesion force at interfaces.

Effect of Graft Copolymer Composition on the Compatibility of Biodegradable PCL/PCL-g-PEG Blend (PCL/PCL-g-PEG 생분해성 블렌드에서 그래프트 공중합체의 조성에 따른 상용성의 영향)

  • Cho, Kuk-Young;Lee, Ki-Seok;Park, Jung-Ki
    • Polymer(Korea)
    • /
    • v.33 no.3
    • /
    • pp.248-253
    • /
    • 2009
  • Blend films based on the poly($\varepsilon$-caprolactone) (PCL) and amphiphilic biodegradable polymer, poly(ethylene glycol) grafted poly($\varepsilon$-caprolactone) (PCL-g- PEG), were prepared with different blend ratios in order to develop new biomedical material. PCL was the main component in the blend. The miscibility and characteristics of the blends were investigated. The crystallization temperature of the blend shifted to high temperatures with an increase of the graft copolymer contents when the homopolymer PCL was the main component of the blend. The PEG side chain in the blend affected the crystallization rate of the PCL crystals in the blend and alternating extinction bands were observed by optical microscopy. The protein adhesion behavior of the film was influenced by the water uptake of the film.