• Title/Summary/Keyword: ${\tau}_f(ppm/^{\circ}C)$

Search Result 111, Processing Time 0.021 seconds

Investigation on Lead-Borosilicate Glass Based Dielectrics for LTCC (Lead-Borosilicate Glass계 LTCC용 유전체에 대한 고찰)

  • Yoon, Sang-Ok;Oh, Chang-Yong;Kim, Kwan-Soo;Jo, Tae-Hyun;Shim, Sang-Heung;Park, Jong-Guk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.6 s.289
    • /
    • pp.338-343
    • /
    • 2006
  • The effects of lead-borosilicate glass frits on the sintering behavior and microwave dielectric properties of ceramic-glass composites were investigated as functions of glass composition of glass addition ($10{\sim}50vol%$), softening point (Ts) of the glass, and sintering temperature of the composites ($500{\sim}900^{\circ}C$ for 2 h). The addition of 50 vol% glass ensured successful sintering below $900^{\circ}C$. Sintering characteristics of the composites were well described in terms of Ts. PbO addition in to the glass enhanced the reaction with $Al_{2}O_3$ to form liquid phase and $PbAl_{2}Si_{2}O_8$, which was responsible to lower Ts. Dielectric constant(${\epsilon}_r$), $Q{\times}f_0$ and temperature coefficient of resonant frequency (${\tau}_f$) of the composite with 50 vol% glass contents ($B_{2}O_{3}:PbO:SiO_{2}:CaO:Al_{2}O_3$ = 5:40:45:5:5) demonstrated 8.5, 6,000 GHz, $-70\;ppm/^{\circ}C$, respectively, which is applicable to substrate requiring a low dielectric constant. When the same glass composition was applied sinter $MgTiO_3\;and\;TiO_2,\;at\;900^{\circ}C$ (50 vol% glass in total), the properties were 23.8, 4,000 GHz, $-65ppm/^{\circ}C$ and 31.1, 2,500 GHz, $+80ppm/^{\circ}C$ respectively, which is applicable to filter requiring an intermidiate dielectric constant.

Microstructural Characterizations on $(Na_{1/2}Pr_{1/2})TiO_3$ Ceramics ($(Li_{1/2}Pr_{1/2})TiO_3$ 세라믹의 미세구조 평가)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hyun-Min;Cho, Yang-Koo;Nahm, Sahn
    • Applied Microscopy
    • /
    • v.32 no.3
    • /
    • pp.257-263
    • /
    • 2002
  • Microstructural investigations of $(Li_{1/2}Pr_{1/2})TiO_3$ (LPT) complex perovskite compounds were carried out using X-ray diffractometry and transmission electron microscopy. LPT has not only the ordering of A-site cation deficiencies but also has the antiphase and inphase tilting of oxygen octahedron and the antiparallel shift of cations. Both the antiphase boundaries and the ferroelastic domains are present in the microstructure. Spinodal decomposition is found in the microstructure. The measured dielectric properties were ${\varepsilon}_r=84.6,\;Q\;{\Large f}_o=776\;GHz,\;{\tau}_{f}=-233.66ppm/^{\circ}C$.

Microstructure Observations in Complex Perovskite $(Na_{1/2}Pr_{1/2})TiO_3$ (Complex Perovskite $(Na_{1/2}Pr_{1/2})TiO_3$의 미세구조 관찰)

  • Lee, Hwack-Joo;Ryu, Hyun;Park, Hyun-Min;Cho, Yang-Koo;Nahm, Sahn
    • Applied Microscopy
    • /
    • v.32 no.2
    • /
    • pp.157-162
    • /
    • 2002
  • Microstructural investigations of $(Na_{1/2}Pr_{1/2})TiO_3$ (NPT) complex perovskite compounds were carried out using X-ray diffractometry and transmission electron microscopy. NPT had not 1:1 chemical ordering of Asite cations but had the antiphase and inphase tilting of oxygen octahedron and the antiparallel shift of cations. Both the antiphase boundaries and the ferroelastic domains were not present in the microstructure. Unidentified second phase was found in the microstructure. The measured dielectric properties were ${\varepsilon}_r=99.6,\;Q\;{\Large f}_o=1124\;GHz,\;{\tau}_{f}=-233.64ppm/^{\circ}C$.

Effect of $Al_2O_3$ Additives on Microwave Dielectric Properties of (Ba,Ca,Mg)-$Nd_2O_3-TiO_2+10wt%Bi_2O_3$ Ceramics ($Al_2O_3$ 첨가가 (Ba,Ca,Mg)-$Nd_2O_3-TiO_2+10wt%Bi_2O_3$ 세라믹의 마이크로파 유전특성에 미치는 영향)

  • 최지원;강종윤;하종윤;윤석진;김현재;정현진;윤기현
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.653-656
    • /
    • 1999
  • Effect of $Al_2O_3$ Additives on Microwave Dielectric Properties of $0.15(Ba_{0.85}Ca_{(0.15-y)}Mg_y)$-0.125 $Nd_2O_3-0.60TiO_2+10wt%Bi_zO_3$ (y=0.05, 0.08) Ceramics was investigated. To control of $\tau\;{f}$ on microwave dielectric properties of $0.15(Ba_{0.85}Ca_{(0.15-y)}Mg_y)$-0.125 $Nd_2O_3-0.60TiO_2+10wt%Bi_zO_3$ ceramics $Al_2O_3$ was doped in the composition range of 0 to 0.15 wt%. As a result, dielectric constant was decreased from 94 to 80 but $Q\cdot{f}_0$ value was increased from 4980 to 5210 GHz and temperature coefficient of resonant frequency can be controlled from +9 to -10$ppm^\circ{C}$ as an increase of$Al_2O_3$ doping concentration. Especially, a new microwave dielectric material having $\varepsilon\;_r=84,\;Q\cdot{f}_0=5120\;GHz\;and\;\tau_f=0\;ppm/^\circ{C}$ was obtained at $Al_2O_3$ doping concentration of 0.08 wt%.

  • PDF

Sintering and Microwave Dielectric Properties of Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] Dielectrics with V2O5 Addition (소결조제 V2O5 첨가에 따른 Bi18(Ca0.725Zn0.275)8Nb12O65 [BCZN] 유전체의 소결 및 마이크로파 유전특성)

  • Lee, Young-Jong;Kim, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.289-294
    • /
    • 2010
  • For the aim of low-temperature co-fired ceramic microwave components, sintering behavior and microwave properties (dielectric constant ${\varepsilon}_r$, quality factor Q, and temperature coefficient of resonant frequency ${\tau}_f$) are investigated in $Bi_{18}O(Ca_{0.725}Zn_{0.275})_8Nb_{12}O_{65}$ [BCZN] ceramics with addition of $V_2O_5$. The specimens are prepared by conventional ceramic processing technique. As the main result, it is demonstrated that the additives ($V_2O_5$) show the effect of lowering of sintering temperature and improvement of microwave properties at the optimum additive content. The addition of 0.25 wt% $V_2O_5$ lowers the sintering temperature to $890^{\circ}C$ utilizing liquidphase sintering and show the microwave dielectric properties (dielectric constant ${\varepsilon}_r$ = 75, quality factor $Q{\times}f$ = 572 GHz, temperature coefficient of resonance frequency ${\tau}_f\;=\;-10\;ppm/^{\circ}C$). The estimated microwave dielectric properties with $V_2O_5$ addition (increase of ${\varepsilon}_r$, decrease of $Q{\times}f$, shift of ${\tau}_f$ to negative values) can be explained by the observed microstrucure (sintered density, abnormal grain structure) and possibly high-permittivity $Bi_{18}Zn_8Nb_{12}O_{65}$ (BZN) phase determined by X-ray diffraction.

Effect of CuO-V2O5 Addition on Microwave Dielectric Properties of (Pb0.45Ca0.55(Fe0.5Nb0.5)0.9Sn0.1]O3 Ceramics

  • Ha, Jong-Yoon;Choi, Ji-Won;Yoon, Ki-Hyun;Choi, Doo-Jin;Yoon, Seok-Jin;Kim, Hyun-Jai
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.1
    • /
    • pp.9-12
    • /
    • 2004
  • The effect of x wt% CuO-y wt% $V_2O_5$ content on the microwave properties of $(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3$ (PCFNS) ceramics was investigated. In order to decrease the sintering temperature and use as a Low Temperature co-firing Ceramics (LTCC), CuO-$V_2O_5$ are added in the PCFNS. The bulk density, dielectric constant (${\varepsilon}_r$) and quality factor(Q${\cdot}f_0$) increased with increase in CuO content within a limited value. The microwave properties were degraded with increases in $V_2O_5$ content. The temperature coefficient of the resonant frequency (${\tau}_f$) of PCFNS was shifted to positive value abruptly with increasing the $V_2O_5$ content, while the ${\tau}_f$ was slightly shifted to positive value with increasing the CuO content. The optimized microwave properties, ${\varepsilon}_r$ = 88, Q${\cdot}f_0$ = 6100 (GHz), and ${\tau}_f$ = 18 ppm/$^{\circ}C$, were obtained in $(Pb_{0.45}Ca_{0.55})[(Fe_{0.5}Nb_{0.5})_{0.9}Sn_{0.1}]O_3$ with 0.2wt% CuO 0.05 wt% $V_2O_5$ and sintered at $1000^{\circ}C$ for 3 h. The relationship between the microstructure and microwave dielectric properties of ceramics was studied by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM)

Microstructure and Microwave Dielectric Properties of (1-x)Mg4Ta2O9-xTiO2(x=0\sim0.9) Ceramics ((1-x)Mg4Ta2O9-xTiO2(x=0\sim0.9)세라믹스의 미세구조와 마이크로파 유전 특성)

  • 김재식;최의선;이문기;류기원;이영희
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.840-845
    • /
    • 2004
  • The microstructure and microwave dielectric properties of $(1-x){Mg}_4{Ta}_2{O}_9-xTi{O}_2(x=0\sim0.9)$ ceramics were investigated. The specimens were prepared by the conventional mixed oxide method with sintering temperature of 140$0^{\circ}C$∼150$0^{\circ}C$. To improve the quality factor and the temperature coefficient of resonant frequency,$ Ti{O}_2(\varepsilon\Gamma=100, Q\times f_\Gamma=40,000 GHz,\ta_f= +450 ppm\diagup^{\circ}C $ was added in ${Mg}_4{Ta}_2{O}_9$ceramics. The dielectric and structural properties were investigated. According to the XRD patterns, $(1-x){Mg}_4{Ta}_2{O}_9-xTi{O}_2(x=0\sim0.9)$ ceramics had the ${Mg}_4{Ta}_2{O}_9$ phase(hexagonal) and ${MgTi}_2{O}_5$phase(orthorhombic). The dielectric constant($\varepsilon_r$). quality($Qtimes{f}_r$${\tau}_f$) of the $(1-x){Mg}_4{Ta}_2{O}_9-xTi{O}_2(x=0\sim0.9)$ ceramics were 8.12∼18.59, 18,750∼186,410 GHz and -36.02∼+3.46 ppm/$^{\circ}C$, respectively.

Microwave Dielectric Properties of Ca(Li1/4Nb3/4)O3-CaTiO3 Ceramics added with Zinc-borosilicate Glass Frit (Zinc-borosilicate Glass Frit 첨가에 따른 Ca(Li1/4Nb3/4)O3-CaTiO3 세라믹스의 마이크로파 유전 특성)

  • Yoon Sang-Ok;Kim Kwan-Soo;Jo Tae-Hyun;Shim Sang-Heung;Park Jong-Guk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.6
    • /
    • pp.524-530
    • /
    • 2006
  • $xCa(Li_{1/4}Nb_{3/4})O_{3}-(1-x)CaTiO_{3}$ ceramics were sintered under the presence of zinc-borosilicate(ZBS) glass and resultant microwave dielectric properties were investigated with a view to applying the composition to low-temperature co-fired ceramic(LTCC) technology. The addition of $5{\sim}15wt%$ ZBS glass ensured successful sintering below $900\;^{\circ}C$. In general, increased addition of ZBS glass increased sinterability but it decreased the quality factor($Q{\times}f_{0}$) significantly due to the formation of an excessive liquid and second phases. As for the addition of $CaTiO_3$, the dielectric constant(${\epsilon}_r$) and temperature coefficient of resonant frequency(${\tau}_f$) increased, while the quality factor($Q{\times}f_{0}$) did not show an apparent change. The sintered $0.9Ca(Li_{1/4}Nb_{3/4})O_{3}-0.1CaTiO_{3}$ specimen at $900\;^{\circ}C$ with 10 wt% ZBS glass demonstrated 39.6 in dielectric constant(${\epsilon}_r$), 4,400 in quality factor$(Q{\times}f_{0}),\;and\;-11ppm/^{\circ}C$ in temperature coefficient of resonant frequency(${\tau}_f$).

Microwave Dielectric Properties of Low Temperature Fired (${Pb_{0.45}}{Ca_{0.55}}$) [(${Fe _{0.5}}{Nb_{0.5}}$)$_{0.9}{Sn_{0.1}}$]$O_3$Ceramics with Various Additives

  • Ha, Jong-Yoon;Park, Ji-Won;Yoon, Seok-Jin;Kim, Hyun-Jai;Yoon, Ki-Hyun
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.7
    • /
    • pp.597-601
    • /
    • 2001
  • The effect of CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$additives on microwave dielectric properties of (P $b_{0.45}$C $a_{0.55}$) [(F $e_{0.5}$N $b_{0.5}$)$_{0.9}$S $n_{0.1}$] $O_3$(PCFNS) were investigated. The PCFNS ceramics were sintered at 11$65^{\circ}C$. To decrease the sintering temperature for using as a low-temperature co-firing ceramics (LTCC), CuO, $B_2$ $O_3$, $V_2$ $O_{5}$ and CuO-B $i_2$ $O_3$were added to the PCFNS. As the content of CuO increased, the sintered density and dielectric constant increased and the temperature coefficient of resonance frequency ($\tau$$_{f}$) shifted to the positive value. When the CuO-B $i_2$ $O_3$were added, dielectric properties were $\varepsilon$$_{r}$ of 83, Q. $f_{0}$ of 6085 GHz, and $\tau$$_{f}$ of 8ppm/$^{\circ}C$ at a sintering temperature of 100$0^{\circ}C$. The relationship between the microstructure and properties of ceramics was studied by X-ray diffraction and scanning electron microscopy.icroscopy.y.icroscopy.y.

  • PDF

Microwave Dielectric Properties of Low-temperature Sintered $MgCo_2(VO_4)_2$ Ceramics Synthesized by Sol-Gel process (졸-겔 공정에 의해 제조된 저온소결 $MgCo_2(VO_4)_2$ 세라믹스의 마이크로파 유전특성)

  • Lee, Ji-Hun;Bang, Jae-Cheol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.288-289
    • /
    • 2006
  • We studied the effect of sol-gel processing and sintering temperature on the microwave properties of $MgCo_2(VO_4)_2$ system(MCV) which is applicable to LTCC(low-temperature cofired ceramics). The MCV was synthesized by sol-gel process using solution that contains precursor molecules for Mg, Co, and V. SEM analysis shows that the average particle size is ${\sim}1{\mu}m$ and size distribution is very uniform compared to the one prepared by conventional solid-state reaction process. Highly dense samples were obtained at the sintering temperature range of $750^{\circ}C{\sim}930^{\circ}C$. The maximum $Q{\times}f_0$ value of 55,700GHz, dielectric constant(${\varepsilon}_r$) of 10.41 and temperature coefficient(${\tau}_f$) of $-85ppm/^{\circ}C$ was obtained at the sintering temperature of $930^{\circ}C$. The superior microwave properties of sol-gel processed MCV relative to conventional solid-state reaction processed one is remarkable especially at lower sintering temperatures such as $750^{\circ}C$ and $800^{\circ}C$.

  • PDF