• Title/Summary/Keyword: ${\sigma}-finite$ measure

Search Result 20, Processing Time 0.021 seconds

ON SOME PROPERTIES OF THE FUNCTION SPACE M

  • Lee, Joung-Nam
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.677-685
    • /
    • 2003
  • Let M be the vector space of all real S-measurable functions defined on a measure space (X, S, $\mu$). In this paper, we investigate some topological structure of T on M. Indeed, (M, T) becomes a topological vector space. Moreover, if $\mu$, is ${\sigma}-finite$, we can define a complete invariant metric on M which is compatible with the topology T on M, and hence (M, T) becomes a F-space.

SHARP Lp→Lr ESTIMATES OF RESTRICTED AVERAGING OPERATORS OVER CURVES ON PLANES IN FINITE FIELDS

  • Koh, Doowon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.251-259
    • /
    • 2015
  • Let $\mathbb{F}^d_q$ be a d-dimensional vector space over a finite field $\mathbb{F}^d_q$ with q elements. We endow the space $\mathbb{F}^d_q$ with a normalized counting measure dx. Let ${\sigma}$ be a normalized surface measure on an algebraic variety V contained in the space ($\mathbb{F}^d_q$, dx). We define the restricted averaging operator AV by $A_Vf(X)=f*{\sigma}(x)$ for $x{\in}V$, where $f:(\mathbb{F}^d_q,dx){\rightarrow}\mathbb{C}$: In this paper, we initially investigate $L^p{\rightarrow}L^r$ estimates of the restricted averaging operator AV. As a main result, we obtain the optimal results on this problem in the case when the varieties V are any nondegenerate algebraic curves in two dimensional vector spaces over finite fields. The Fourier restriction estimates for curves on $\mathbb{F}^2_q$ play a crucial role in proving our results.

CONVOLUTION OPERATORS WITH THE AFFINE ARCLENGTH MEASURE ON PLANE CURVES

  • Choi, Young-Woo
    • Journal of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.193-207
    • /
    • 1999
  • Let ${\gamma}$ : Ilongrightarrow R2 be a sufficiently smooth curve and $\sigma$${\gamma}$ be the affine arclength measure supported on ${\gamma}$. In this paper, we study the Lp - improving properties of the convolution operators T$\sigma$${\gamma}$ associated with $\sigma$${\gamma}$ for various curves ${\gamma}$. Optimal results are obtained for all finite type plane curves and homogeneous curves (possibly blowing up at the origin). As an attempt to extend this result to infinitely flat curves we give and example of a family of flat curves whose affine arclength measure has same Lp-improvement property. All of these results will be based on uniform estimates of damping oscillatory integrals.

  • PDF

COMPACT OPERATOR RELATED WITH POISSON-SZEGö INTEGRAL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.3
    • /
    • pp.333-342
    • /
    • 2007
  • Suppose that ${\mu}$ is a finite positive Borel measure on the unit ball $B{\subset}C^n$. The boundary of B is the unit sphere $S=\{z:{\mid}z{\mid}=1\}$. Let ${\sigma}$ be the rotation-invariant measure on S such that ${\sigma}(S)=1$. In this paper, we will show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$ where $P(z,{\zeta})$ is the Poission-Szeg$\ddot{o}$ kernel for B, then ${\mu}$ is a Carleson measure. We will also show that if $sup_{{\zeta}{\in}S}\;{\int}_{B}\;P(z,{\zeta})d{\mu}(z)$<${\infty}$, then the operator T such that T(f) = P[f] is compact as a mapping from $L^p(\sigma)$ into $L^p(B,d{\mu})$.

  • PDF

ON SOME MEASURE RELATED WITH POISSON INTEGRAL ON THE UNIT BALL

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Let $\mu$ be a finite positive Borel measure on the unit ball $B{\subset}\mathbb{C}^n$ and $\nu$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, $\sigma$ is the rotation-invariant measure on S such that ${\sigma}(S)=1$. Let $\mathcal{P}[f]$ be the invariant Poisson integral of f. We will show that there is a constant M > 0 such that $\int_B{\mid}{\mathcal{P}}[f](z){\mid}^{p}d{\mu}(z){\leq}M\;{\int}_B{\mid}{\mathcal{P}}[f](z)^pd{\nu}(z)$ for all $f{\in}L^p({\sigma})$ if and only if ${\parallel}{\mu}{\parallel_r}\;=\;sup_{z{\in}B}\;\frac{\mu(E(z,r))}{\nu(E(z,r))}\;<\;\infty$.

  • PDF

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL VIA ADDITIVE FUNCTIONALS

  • Lim, Jung-Ah
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.525-538
    • /
    • 1998
  • Recently, a stability theorem for the Feynman integral as a bounded linear operator on$ L_2$($R^{d}$ /) with respect to measures whose positive and negative variations are in the generalized Kato class was proved. We study a stability theorem for the Feynman integral with respect to measures whose positive variations are in the class of $\sigma$-finite smooth measures and negative variations are in the generalized Kato class. This extends the recent result in the sense that the class of $\sigma$-finite smooth measures properly contains the generalized Kato class.

  • PDF

LIMITING PROPERTIES FOR A MARKOV PROCESS GENERATED BY NONDECREASING CONCAVE FUNCTIONS ON $R_{n}^{+}$

  • Lee, Oe-Sook
    • Communications of the Korean Mathematical Society
    • /
    • v.9 no.3
    • /
    • pp.701-710
    • /
    • 1994
  • Suppose ${X_n}$ is a Markov process taking values in some arbitrary space $(S, \varphi)$ with n-stemp transition probability $$ P^{(n)}(x, B) = Prob(X_n \in B$\mid$X_0 = x), x \in X, B \in \varphi.$$ We shall call a Markov process with transition probabilities $P{(n)}(x, B)$ $\phi$-irreducible for some non-trivial $\sigma$-finite measure $\phi$ on $\varphi$ if whenever $\phi(B) > 0$, $$ \sum^{\infty}_{n=1}{2^{-n}P^{(n)}}(x, B) > 0, for every x \in S.$$ A non-trivial $\sigma$-finite measure $\pi$ on $\varphi$ is called invariant for ${X_n}$ if $$ \int{P(x, B)\pi(dx) = \pi(B)}, B \in \varphi $$.

  • PDF

SOME RESULTS RELATED WITH POISSON-SZEGÖKERNEL AND BEREZIN TRANSFORM

  • Yang, Gye Tak;Choi, Ki Seong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.3
    • /
    • pp.417-426
    • /
    • 2011
  • Let ${\mu}$ be a finite positive Borel measure on the unit ball $B{\subset}{\mathbb{C}}^n$ and ${\nu}$ be the Euclidean volume measure such that ${\nu}(B)=1$. For the unit sphere $S=\{z:{\mid}z{\mid}=1\}$, ${\sigma}$ is the rotation-invariant measure on S such that ${\sigma}(S) =1$. Let ${\mathcal{P}}[f]$ be the Poisson-$Szeg{\ddot{o}}$ integral of f and $\tilde{\mu}$ be the Berezin transform of ${\mu}$. In this paper, we show that if there is a constant M > 0 such that ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}M{\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\nu}(z)$ for all $f{\in}L^p(\sigma)$, then ${\parallel}{\tilde{\mu}}{\parallel}_{\infty}{\equiv}{\sup}_{z{\in}B}{\mid}{\tilde{\mu}}(z){\mid}<{\infty}$, and we show that if ${\parallel}{\tilde{\mu}{\parallel}_{\infty}<{\infty}$, then ${\int_B}{\mid}{\mathcal{P}}[f](z){\mid}^pd{\mu}(z){\leq}C{\mid}{\mid}{\tilde{\mu}}{\mid}{\mid}_{\infty}{\int_S}{\mid}f(\zeta){\mid}^pd{\sigma}(\zeta)$ for some constant C.

Subnormality and Weighted Composition Operators on L2 Spaces

  • AZIMI, MOHAMMAD REZA
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.345-353
    • /
    • 2015
  • Subnormality of bounded weighted composition operators on $L^2({\Sigma})$ of the form $Wf=uf{\circ}T$, where T is a nonsingular measurable transformation on the underlying space X of a ${\sigma}$-finite measure space (X, ${\Sigma}$, ${\mu}$) and u is a weight function on X; is studied. The standard moment sequence characterizations of subnormality of weighted composition operators are given. It is shown that weighted composition operators are subnormal if and only if $\{J_n(x)\}^{+{\infty}}_{n=0}$ is a moment sequence for almost every $x{{\in}}X$, where $J_n=h_nE_n({\mid}u{\mid}^2){\circ}T^{-n}$, $h_n=d{\mu}{\circ}T^{-n}/d{\mu}$ and $E_n$ is the conditional expectation operator with respect to $T^{-n}{\Sigma}$.

EQUIVALENT NORMS IN A BANACH FUNCTION SPACE AND THE SUBSEQUENCE PROPERTY

  • Calabuig, Jose M.;Fernandez-Unzueta, Maite;Galaz-Fontes, Fernando;Sanchez-Perez, Enrique A.
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1387-1401
    • /
    • 2019
  • Consider a finite measure space (${\Omega}$, ${\Sigma}$, ${\mu}$) and a Banach space $X({\mu})$ consisting of (equivalence classes of) real measurable functions defined on ${\Omega}$ such that $f{\chi}_A{\in}X({\mu})$ and ${\parallel}f{\chi}_A{\parallel}{\leq}{\parallel}f{\parallel}$, ${\forall}f{\in}({\mu})$, $A{\in}{\Sigma}$. We prove that if it satisfies the subsequence property, then it is an ideal of measurable functions and has an equivalent norm under which it is a Banach function space. As an application we characterize norms that are equivalent to a Banach function space norm.