• 제목/요약/키워드: ${\kappa}$-AP

검색결과 132건 처리시간 0.02초

Ethanol-induced Activiationof Transcription Factor NF-$\kappa$B and AP-1 in C6 Glial Cells

  • Park, Jae -Won;Shim, Young-Sup
    • Preventive Nutrition and Food Science
    • /
    • 제4권3호
    • /
    • pp.209-214
    • /
    • 1999
  • In this study, the effectof ethanol and acetaldehyde on DNA binding activities of NF-$textsc{k}$B and AP-1 were evaluated in C6 rat glial cells. Both NF-$textsc{k}$B and AP-1 are important transcription factors for the expression of various cytokines in glial cells. Our data showed that neither ethanol nor acetaldehyde induced conspicuous cell death of C6 cells at clinically realistic concentrations. When the DNA binding activities of nuclear NF-$textsc{k}$B and AP-1 were estimated using electrophoretic mobility shift assay (EMSA), ethanol(0.3%) or acetaldehyde(1mM) induced transient activation of these transcription factors, which attained peak levels at 4~8 hours and declined to basal levels at 12 hours after treatement . The supershift analysis showed that the increased activities of NF-$textsc{k}$B in ethanol/acetaldehyde-treated C6 cells were due to the preferential induction of p65/p50 heterodimer complex. The DNA binding activities of these transcriptional factors decreased below basal levels when cells were cultured with either ethanol or acetaldehyde for 24 hours, and showed the inhibitory effect of chronic ehtanol /acetaldehyde treatment on the activities of these transsriptional factors. Our data indicate that either ethanol or acetaldehyde can induce functional changes of glial cells throught bi-directional modulation of NF-$textsc{k}$B and AP-1 DNA binding activities.

  • PDF

L1 Cell Adhesion Molecule에 의한 대식세포 매개 염증반응의 억제 기전 분석 (L1 Cell Adhesion Molecule Suppresses Macrophage-mediated Inflammatory Responses)

  • 이영수
    • 약학회지
    • /
    • 제60권3호
    • /
    • pp.128-134
    • /
    • 2016
  • L1 cell adhesion molecule (L1CAM) is a cell surface molecule to initiate a variety of cellular responses through interacting with other cell adhesion molecules in a homophilic or heterophilic manner. Although its expression was found to be upregulated in some tumor cells, including cholangiocarcinomas, and ovarian cancers, and many studies have investigated the role of L1CAM in these cancers, its role in inflammatory responses has been poorly understood. In this study, we explored the role of L1CAM in macrophage-mediated inflammatory responses. L1CAM significantly suppressed the production of nitric oxide (NO), but induced cell proliferation in RAW264.7 cells. L1CAM expression was detectable, but its expression was markedly decreased by lipopolysaccharide (LPS) in RAW264.7 cells. In addition, the expression of pro-inflammatory genes, such as tumor necrosis factor (TNF)-${\alpha}$, cyclooxygenase (COX)-2, and inducible nitric oxide synthase (iNOS) induced by LPS was dramatically suppressed by L1CAM in RAW264.7 cells. L1CAM inhibited the transcriptional activities of NF-${\kappa}B$ and AP-1 while its cytoplasmic domain deletion form, $L1{\Delta}CD$ did not suppressed their activities in RAW264.7 cells. Moreover, L1CAM suppressed nuclear translocation of p65 and p50 as well as c-Jun, c-Fos and p-ATF2 which are transcription factors of NF-${\kappa}B$ and AP-1, respectively. In conclusion, L1CAM suppressed inflammatory responses in macrophages through inhibiting NF-${\kappa}B$ and AP-1 pathways.

가미속풍활형탕이 human fibroblast-like synoviocytes 내 염증 유발 cytokine과 전사인자에 미치는 영향 (Inhibitory Effect of Kamisopunghwalhyeol-tang (Jiaweishufenghuoxie-tang) on Inflammatory Cytokine Production and $NF-{\kappa}B$ and AP-1 Activation in Cultured Humau Fibroblast-like Synoviocytes)

  • 양동원;오민석;김동희
    • 대한한의학회지
    • /
    • 제24권3호
    • /
    • pp.84-95
    • /
    • 2003
  • Objective : This study was carried out to investigate the effects of Kamisopunghwalhyeol-tang (Jiaweishujenghuoxie-tang; Kami-SPHHT) on the immunity responses of the Synoviocytes isolated from the patients on rheumatoid arthritis. Methods : Cells were stimulated by $Interleukin-1{\beta}$ and Tumor Necrosis $Factor-{\alpha}$ in the presence or absence of Kami-SPHHT, and then induced cytokine mRNA levels were determined by RT-PCR and real-time quantitative RT-PCR. Results : Levels of $IL-1{\beta},{\;}IL-6,{\;}TNF-{\alpha}$, COX-2, and NOS II mRNA expressions significantly decreased in Kami-SPHHT treated cells compared to non-treated control cells. Also, DNA-binding activity of $NF-{\kappa}B$ and AP-l decreased in Kami- SPHHT treated hFLSs. Conclusion : These results suggest that Kami-SPHHT may be involved in anti-inflammatory reactions by inducing cytokine gene expression in synoviocytes, and further in vivo examination on its efficacy can provide potential application for the treatment of rheumatoid arthritis.

  • PDF

Screening of immunoactive ingredients in frequently consumed food in Korea

  • Gil, Na-Young;Lee, Sang-Myeong;Mun, Ji-Young;Yeo, Soo-Hwan;Kim, So-Young
    • Journal of Biomedical and Translational Research
    • /
    • 제19권4호
    • /
    • pp.92-102
    • /
    • 2018
  • The objectives of this study were to find out the plant to enhance immune activity among 42 kinds of foods frequently consumed by the Korean elderly consisting of 5 food groups and 5 wild plants. Each sample was assessed the immunoactive effect by measuring $NF-{\kappa}B/AP1$ gene expression, nitric oxide and cytokine production in $RAW-Blue^{TM}$ cell. Soybean sprouts of 47 plants showed the highest $NF-{\kappa}B/AP1$ gene expression at the level of $1.13{\pm}0.03$ (O.D. 650 nm) and Soritae, sweet potato, banana, apple, garlic, crown daisy, cabbage and Ailanthus altissima also had high activity of $NF-{\kappa}B/AP1$ gene in $RAW-Blue^{TM}$ cell stimulated by LPS. NO production of Ailanthus altissima was significantly higher than that of other plants and 16 plants of glutinous sorghum, black rice, Seoritae, Heuktae, sweet potato, banana, apple, garlic, mungbean sprouts, spinach, crown daisy, young pumpkin, cabbage, soybean sprouts, Actinidia arguta and Aster scaber were the next best activity. The above results selected 17 out of 47 plant samples. Moreover, soybean sprouts was significantly shown to increase $TNF-{\alpha}$ ($1,509.55{\pm}1.38pg/mL$) and $IL-1{\beta}$ ($54.56{\pm}1.08pg/mL$) cytokines in comparison with RAW-Blue cell stimulated by LPS. According to the results of in vitro evaluation, the ethanol extract of soybean sprout increased the production of immune-enhancing cytokines by proliferation of macrophages. In addition, $NF-{\kappa}B$ transcription factor activity and NO production ability were excellent, and it was selected as a material having excellent immunological activity.

Kalopanaxsaponin A Exerts Anti-Inflammatory Effects in Lipopolysaccharide-Stimulated Microglia via Inhibition of JNK and NF-κB/AP-1 Pathways

  • Jeong, Yeon-Hui;Hyun, Jin-Won;Le, Tien Kim Van;Kim, Dong-Hyun;Kim, Hee-Sun
    • Biomolecules & Therapeutics
    • /
    • 제21권5호
    • /
    • pp.332-337
    • /
    • 2013
  • Microglial activation plays an important role in the development and progression of various neurological disorders such as cerebral ischemia, multiple sclerosis, and Alzheimer's disease. Thus, controlling microglial activation can serve as a promising therapeutic strategy for such brain diseases. In the present study, we showed that kalopanaxsaponin A, a triterpenoid saponin isolated from Kalopanax pictus, inhibited inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and tumor necrosis factor (TNF)-${\alpha}$ expression in lipopolysaccharide (LPS)-stimulated microglia, while kalopanaxsaponin A increased anti-inflammatory cytokine interleukin (IL)-10 expression. Subsequent mechanistic studies revealed that kalopanaxsaponin A inhibited LPS-induced DNA binding activities of NF-${\kappa}B$ and AP-1, and the phosphorylation of JNK without affecting other MAP kinases. Furthermore, kalopanaxsaponin A inhibited the intracellular ROS production with upregulation of anti-inflammatory hemeoxygenase-1 (HO-1) expression. Based on the previous reports that JNK pathway is largely involved in iNOS and proinflammatory cytokine gene expression via modulating NF-${\kappa}B$/AP-1 and ROS, our data collectively suggest that inhibition of JNK pathway plays a key role in anti-inflammatory effects of kalopanaxsaponin A in LPS-stimulated microglia.

Inhibition of Lipopolysaccharide-stimulated Inflammatory Cytokine Production by LY303511 in Human Macrophagic THP-1 Cells

  • Kim, So-Hee;Paek, Yun-Woong;Kang, In-Chol
    • International Journal of Oral Biology
    • /
    • 제42권3호
    • /
    • pp.117-121
    • /
    • 2017
  • We have previously shown that the specific phosphatidylinositol 3-kinase inhibitor LY294002 (LY29), and its inactive analog LY303511 (LY30), inhibit a monocyte chemoattractant protein-1 (MCP-1) expression in human umbilical vein endothelial cells; these results suggest the potential of LY30 as an anti-inflammatory drug. In this study, we determined the effects of LY30 on the production of various inflammatory cytokines in human macrophagic THP-1 cells which were stimulated with lipopolysaccharide (LPS). LY30 selectively suppressed the mRNA expression of IL-12 p40, $TNF-{\alpha}$, and MCP-1 without affecting the expression of $IL-1{\alpha}$, IL-6, and IL-8. Inhibition of the production of IL-12 and $TNF-{\alpha}$ by LY30 was also demonstrated using ELISA assays. In order to elucidate the mechanisms of the action of LY30, we examined the role played by the mitogen-activated protein kinases and the key transcription factors, AP-1 and $NF-{\kappa}B$ in LPS-stimulated THP-1 cells. The results revealed that LY30 inhibited LPS-induced activation of ERK, but not p38 or JNK. Furthermore, the AP-1 DNA binding activity was suppressed by LY30 based upon the dosage, whereas $NF-{\kappa}B$ DNA binding was not affected. These results suggest that LY30 selectively inhibits cytokine production in the LPS-stimulated macrophagic THP-1 cells by down-regulating the activation of ERK and AP-1.

High mobility group B1(HMGB1)과 LPS의 염증유발효과 차이의 비교 및 HMGB1에 의한 IL-8 promoter 자극 기전의 규명 (Proinflammatory Effects of High Mobility Group B1 (HMGB1) Versus LPS and the Mechanism of IL-8 Promoter Stimulation by HMGB1)

  • 전은주;곽희원;송주한;이영우;정재우;최재철;신종욱;박인원;최병휘;김재열
    • Tuberculosis and Respiratory Diseases
    • /
    • 제62권4호
    • /
    • pp.299-307
    • /
    • 2007
  • 배경: HMGB1은 염증반응의 후기에 분비되는 중요한 염증유발물질 중 하나이다. 본 연구에서는 기존에 염증유발물질로 잘 알려진 LPS와 새롭게 염증유발물질로 관심을 받고 있는 HMGB1의 염증유발작용을 생체 외 및 생체 내 실험을 통해 비교하고자 하였다. 또한 HMGB1의 자극에 의한 IL-8 promoter region의 활성화에 중요한 역할을 수행하는 전사인자들을 확인하고자 하였다. 방법: RAW264.7 세포에 LPS(100 ng/ml) 또는 HMGB1(500 ng/ml)을 투여하고 각각 0, 2, 4, 8, 12 그리고 24시간 뒤에 세포상층액의 $TNF-{\alpha}$, MIP-2 그리고 $IL-1{\beta}$의 농도를 ELISA법으로 측정하였다. 생쥐의 복강에 LPS(5 mg/kg) 또는 HMGB1(2.5 mg/kg)을 주입하여 급성폐손상을 유발한 후에 폐의 사이토카인의 발현과 MPO 활성도를 측정하였다(LPS는 4시간 뒤, HMGB1은 24 시간 뒤). IL-8 promoter 부위에 있는 NF-IL6, $NF-{\kappa}B$ 그리고 AP-1에 대한 결합부위에 대해 돌연변이를 일으킨 후에 각각의 돌연변이체를 pIL-6luc에 결합시킨 뒤 RAW264.7 세포에 삽입하였다. 이 세포들을 36시간 배양한 후에 HMGB1(500 ng/ml)으로 자극하고, 한 시간 뒤에 세포를 녹인 후 luciferase 활성도를 측정하였다. 결과: LPS 투여 후에 RAW264.7 세포 배양상층액의 $TNF-{\alpha}$농도는 24시간 뒤에, MIP-2 농도는 8시간 뒤에 최고치를 보였다. 한편 HMGB1 투여 후에는 $TNF-{\alpha}$와 MIP-2 농도 모두 24시간 뒤에 최고치를 나타내었다. LPS 복강 내 투여 후 4시간 뒤에 생쥐의 폐의 $TNF-{\alpha}$, MIP-2 그리고 $IL-1{\beta}$의 농도는 대조군에 비해 현저히 증가하였으나, HMGB1 복강 내 투여 후 24시간 뒤에 생쥐의 폐에서는 $IL-1{\beta}$의 농도만 약간 증가하였다. MPO 활성도는 LPS와 HMGB1 투여 후에 모두 증가하였으며, LPS 투여 후가 더 의미있게 증가하였다. $NF-{\kappa}B$ 돌연변이체와 AP-1 돌연변이체에서 luciferase 활성도가 의미있게 감소하였다. 결론: 이상의 결과를 살펴볼 때 HMGB1은 염증유발효과는 LPS에 비해 강도가 떨어지나 지속시간은 오래 계속되는 것으로 보이며, HMGB1에 의한 IL-8의 활성화에 $NF-{\kappa}B$ 뿐만 아니라 AP-1도 중요한 역할을 수행하는 것으로 판단된다.

소염정장탕(消炎整腸湯)이 DSS로 유발(誘發)된 생쥐의 궤양성 대장염에 미치는 영향(影響) (The Effects of Soyumjungjang-tang on DSS-Induced Ulcerative Colitis in Mouse)

  • 송영근;류봉하;윤성우
    • 대한한방내과학회지
    • /
    • 제29권2호
    • /
    • pp.385-400
    • /
    • 2008
  • Objectives : This study was carried out to investigate the effects of Soyumjungjang-tang(SJT) on the experimental ulcerative colitis induced by dextran sulfate sodium(DSS) in mice. Methods : Ulcerative colitis was induced through supplying 4% DSS solution as the drinking water for 7 days in 6-week-old male ICR mice. The colitic mice were divided into three groups: the sample groups were orally administered SJT in doses of 25mg/kg(S25 group) or 100mg/kg(S100 group) once a day for 10 days, from 3 days before starting drinking the DSS solution, and the control(C) group was administered normal saline instead of SJT. The DSS solution or SJT was not administered to the normal(N) group. The length of colon, histologic finding, the activities of myeloperoxidase(MPO) and alkaline phosphatase(AP), and the expressions of $IL-1{\beta}$, IL-6, COX-2, $NF-{\kappa}B$, and $I{\kappa}B$ in colonic mucosa was checked using immunoblot, ELISA, etc. The activities of chondroitinase, tryptophanase, ${\beta}-glucuronidase$ and ${\beta}-glucosidase$ in stool were also measured. Results : The length of colon shortened, histologic finding deteriorated, the activities of MPO, AP, chondroitinase, tryptophanase, ${\beta}-glucuronidase$ and ${\beta}-glucosidase$, and the expressions of $IL-1{\beta}$, IL-6, COX-2, $NF-{\kappa}B$ increased, and the expression of $I{\kappa}B$ decreased in the C group. All measures, except $NF-{\kappa}B$, were restored in S25 group, but some measures deteriorated more in the S100 group than in the C group. Conclusions : According to the above results, it is supposed that SJT has a potential therapeutic effect on ulcerative colitis.

  • PDF

Current Understanding of RANK Signaling in Osteoclast Differentiation and Maturation

  • Park, Jin Hee;Lee, Na Kyung;Lee, Soo Young
    • Molecules and Cells
    • /
    • 제40권10호
    • /
    • pp.706-713
    • /
    • 2017
  • Osteoclasts are bone-resorbing cells that are derived from hematopoietic precursor cells and require macrophage-colony stimulating factor and receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL) for their survival, proliferation, differentiation, and activation. The binding of RANKL to its receptor RANK triggers osteoclast precursors to differentiate into osteoclasts. This process depends on RANKL-RANK signaling, which is temporally regulated by various adaptor proteins and kinases. Here we summarize the current understanding of the mechanisms that regulate RANK signaling during osteoclastogenesis. In the early stage, RANK signaling is mediated by recruiting adaptor molecules such as tumor necrosis factor receptorassociated factor 6 (TRAF6), which leads to the activation of mitogen-activated protein kinases (MAPKs), and the transcription factors nuclear factor-${\kappa}B$ (NF-${\kappa}B$) and activator protein-1 (AP-1). Activated NF-${\kappa}B$ induces the nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), which is the key osteoclastogenesis regulator. In the intermediate stage of signaling, the co-stimulatory signal induces $Ca^{2+}$ oscillation via activated phospholipase $C{\gamma}2$ ($PLC{\gamma}2$) together with c-Fos/AP-1, wherein $Ca^{2+}$ signaling facilitates the robust production of NFATc1. In the late stage of osteoclastogenesis, NFATc1 translocates into the nucleus where it induces numerous osteoclast-specific target genes that are responsible for cell fusion and function.

급성 저산소증 상태에서 심장 내 전사인자 NF-κB의 기능 (Role of the Nuclear Transcription Factor NF-κB Caused by Acute Hypoxia in the Heart)

  • 주찬웅;정우석;김재철;이호근
    • Clinical and Experimental Pediatrics
    • /
    • 제45권9호
    • /
    • pp.1106-1113
    • /
    • 2002
  • 목 적: 전사인자 $NF-{\kappa}B$는 스트레스 등으로부터 세포 자멸사를 조절하여 적응을 유지하는 기본적인 분자로 인식되고 있다. 저산소증 상태는 많은 심장병에서 동반되는 병변으로 성장인자 VEGF와 IGF-I는 저산소증 시에 심장을 보호하는 작용을 할 것으로 추측되고 있다. 본 연구에서는 저산소증과 같은 자극으로부터 심장의 보호 기능이 추정된 $NF-{\kappa}B$의 발현과 함께 VEGF와 IGF-I의 발현 연관성을 검토하여 분자 생물학적인 기전을 이해하고자 하였다. 방 법 : 실험동물로 Sprague Dawley rat을 이용하여, 저산소 자극은 8%의 산소와 92% 질소를 hypoxic chamber로 관류시키며 유도하였다. 심장에 대한 저산소증 자극 후 심근세포로부터 측정 인자들과 관련된 핵 내 단백질, 전단백질 그리고 mRNA를 분리하였다. 핵 내의 전사인자는 EMSA로 측정하였으며, VEGF와 IGF-I의 발현은 competitive-PCR, Western hybridization, Northern hybridization으로 확인하였다. 또한 이러한 성장인자의 발현과 관련된 $NF-{\kappa}B$의 기능을 확인하기 위하여 $NF-{\kappa}B$의 핵 내 이동 억제제인 DDTC를 전 처치로 복강 내 주사하여 그에 따른 VEGF 및 IGF-I의 발현 양상을 비교하였다. 결 과 : 저산소 자극 후에 심근 세포 내에 전사인자 $NF-{\kappa}B$, AP-1, NF-ATc의 활성이 증가되었다. VEGF와 IGF-I의 발현도 저산소증 자극 시 증가되었지만, DDTC 전 처치에 의한 $NF-{\kappa}B$의 핵 내 이동 차단 후 이들 인자의 발현은 의의 있게 감소하였다. 결 론 : 전사인자 $NF-{\kappa}B$는 저산소증 상태에서 그 활성이 증가하고 저산소증 상태와 같은 심장에 대한 이상 자극 시 VEGF와 IGF-I의 발현을 증가시켜 심장을 보호하는 것으로 추정된다.