An, Byung Chull;Barampuram, Shyamkumar;Lee, Seung Sik;Lee, Eun Mi;Chung, Byung Yeoup
방사선산업학회지
/
제4권1호
/
pp.47-51
/
2010
Centipedegrass is a warm season turfgrass in the world. Chlorogenic acid (CA) is one of the important compounds present in the leaf of centipedegrass and already known as an antioxidant, CA has become a key resistance against insect pests and bacteria pathogens of agricultural and horticultural plants during seedling stage. Furthermore, CA is accumulated by abiotic stress such as an UV irradiation. In present study, we investigated enhancement of the level of CA upon gamma irradiation in centipedegrass. The high performance liquid chromatography (HPLC) data analysis showed an approximately increasing of the CA levels from among the irradiated samples. However, plants irradiated at 50 Gy showed a constant increase in the CA level (0.0066 to $0.114mg\;ml^{-1}$ and 0.0258 to $0.2211mg\;ml^{-1}$, respectively) from $3^{rd}$ to $15^{th}$ day among one and three month irradiated plants compared to control. The present study, indicates an increase in the CA level upon gamma irradiation, suggests strategy for conferment of strong resistance in seedling stage plants by gamma irradiation as simplicity and cheaply method.
The emergence of new nanoscale technologies has imposed significant challenges to designing reliable electronic systems in radiation environments. A few types of radiation like Total Ionizing Dose (TID) can cause permanent damages on such nanoscale electronic devices, and current state-of-the-art technologies to tackle TID make use of expensive radiation-hardened devices. This paper focuses on a novel and different approach: using machine learning algorithms on consumer electronic level Field Programmable Gate Arrays (FPGAs) to tackle TID effects and monitor them to replace before they stop working. This condition has a research challenge to anticipate when the board results in a total failure due to TID effects. We observed internal measurements of FPGA boards under gamma radiation and used three different anomaly detection machine learning (ML) algorithms to detect anomalies in the sensor measurements in a gamma-radiated environment. The statistical results show a highly significant relationship between the gamma radiation exposure levels and the board measurements. Moreover, our anomaly detection results have shown that a One-Class SVM with Radial Basis Function Kernel has an average recall score of 0.95. Also, all anomalies can be detected before the boards are entirely inoperative, i.e. voltages drop to zero and confirmed with a sanity check.
Lee Young-Keun;Chang Hwa-Hyoung;Lee Ho-Jin;Park Heesoon;Lee Kyung Hee;Joe Min-Ho
환경생물
/
제23권4호
/
pp.405-408
/
2005
To induce the enhanced mutants of dinitroaniline herbicide pendimethalin degrading bacterium, Bacillus sp. MS202 was irradiated with gamma radiation at the dose of $LD_{99}$ (3.35 kGy). Three enhanced mutants (MS202m7, MS202m14, MS202m18) were isolated from the candidates by the generation - isolation method. Clear zone formation and the GC analysis confirmed that the degrading activity of each enhanced mutant (MS202m7, MS202m14, MS202m18), the formation of pendimethalin metabolite, increased by $11\%,\;45\%,\;and\;32\%$ than a wild type, respectively. It suggested that these mutants induced by gamma radiation could be useful for the application of pesticide degradation.
The most important industrial application of gamma radiation in characterizing green compacts is the determination of the density. Examples are given where this method is applied in manufacturing technical components in powder metallurgy. The requirements imposed by modern quality management systems and operation by the workforce in industrial production are described. The accuracy of measurement achieved with this method is demonstrated and a comparison is given with other test methods to measure the density. The advantages and limitations of gamma ray densitometry are outlined. The gamma ray densitometer measures the attenuation of gamma radiation penetrating the test parts (Fig. 1). As the capability of compacts to absorb this type of radiation depends on their density, the attenuation of gamma radiation can serve as a measure of the density. The volume of the part being tested is defined by the size of the aperture screeniing out the radiation. It is a channel with the cross section of the aperture whose length is the height of the test part. The intensity of the radiation identified by the detector is the quantity used to determine the material density. Gamma ray densitometry can equally be performed on green compacts as well as on sintered components. Neither special preparation of test parts nor skilled personnel is required to perform the measurement; neither liquids nor other harmful substances are involved. When parts are exhibiting local density variations, which is normally the case in powder compaction, sectional densities can be determined in different parts of the sample without cutting it into pieces. The test is non-destructive, i.e. the parts can still be used after the measurement and do not have to be scrapped. The measurement is controlled by a special PC based software. All results are available for further processing by in-house quality documentation and supervision of measurements. Tool setting for multi-level components can be much improved by using this test method. When a densitometer is installed on the press shop floor, it can be operated by the tool setter himself. Then he can return to the press and immediately implement the corrections. Transfer of sample parts to the lab for density testing can be eliminated and results for the correction of tool settings are more readily available. This helps to reduce the time required for tool setting and clearly improves the productivity of powder presses. The range of materials where this method can be successfully applied covers almost the entire periodic system of the elements. It reaches from the light elements such as graphite via light metals (AI, Mg, Li, Ti) and their alloys, ceramics ($AI_20_3$, SiC, Si_3N_4, $Zr0_2$, ...), magnetic materials (hard and soft ferrites, AlNiCo, Nd-Fe-B, ...), metals including iron and alloy steels, Cu, Ni and Co based alloys to refractory and heavy metals (W, Mo, ...) as well as hardmetals. The gamma radiation required for the measurement is generated by radioactive sources which are produced by nuclear technology. These nuclear materials are safely encapsulated in stainless steel capsules so that no radioactive material can escape from the protective shielding container. The gamma ray densitometer is subject to the strict regulations for the use of radioactive materials. The radiation shield is so effective that there is no elevation of the natural radiation level outside the instrument. Personal dosimetry by the operating personnel is not required. Even in case of malfunction, loss of power and incorrect operation, the escape of gamma radiation from the instrument is positively prevented.
This study was compared microbiological safety with gamma-irradiated porcine tendon and skin, as materials for the development of xenografts to regenerate damaged tissues and protect secondary contamination. The porcine tendon and skin were gamma-irradiated after inoculation of bacteria and virus to evaluate irradiation sensitivity of microorganisms. The result showed that the porcine tendon and skin were not different on the sensitivity of microorganisms by gamma irradiation. Bacteria inoculated in the porcine tendon and skin were confirmed that E. coli was the $D_{10}$ values of $0.32{\pm}0.082$ and $0.25{\pm}0.1kGy$ on tendon and skin, and B. subtilis was $4.00{\pm}0.312$ and $3.88{\pm}0.3kGy$ on gamma irradiation, respectively. Moreover, Virus inoculated in the porcine tendon and skin was observed that poliovirus (PV) was $6.26{\pm}0.332$ and $6.88{\pm}0.3kGy$, and porcine parvovirus (PPV) was $1.75{\pm}0.131$ and $1.73{\pm}0.2kGy$ and bovine viral diarrhoea virus (BVDV) was $3.70{\pm}0.212$ and $3.81{\pm}0.2kGy$ on gamma irradiation, respectively. Virus showed higher resistance compared to bacteria on gamma irradiation, but was not detected CPE (cytopathic effect) by virus both tendon and skin at 25 kGy, a standard dose recommended from IAEA for sterilization of medical products. Therefore, These results were considered that gamma irradiation could control effectively bacteria and virus to develop safe porcine xenograft, and apply same irradiation doses to all tissues including tendon and skin of porcine.
본 연구에서는 고선량 감마선 조사에 의한 김치의 탈색, 이미 및 이취의 발생을 억제하고 품질을 개선하기 위해 파프리카 색소와 김치향을 첨가하였다. 첨가물의 최적 첨가량 결정을 위한 관능평가 결과, 파프리카 색소와 김치향의 최적 첨가량은 각각 0.2%로 결정되었다. 김치의 적색도와 capsanthin 함량은 25 kGy의 감마선 조사로 인해 감소하였으나 0.2%의 파프리카 색소를 첨가한 후 적색도와 capsanthin 함량은 증가하였고 $35^{\circ}C$, 30일의 저장기간 동안 적색도는 유지되었다. 또한 관능평가 결과로부터 파프리카 색소 및 김치향이 감마선 조사에 의한 김치의 관능적 품질 저하를 방지하는데 효과적임을 알 수 있었다. 따라서 파프리카색소, 김치향 첨가 및 고선량 감마선 조사의 병용처리는 멸균된 김치의 관능적 품질을 개선하기 위한 효과적인 방법으로 판단되었다.
This study evaluated the change in whitening activity of ${\beta}-glucan$ by gamma-irradiation. Tyrosinase inhibition was significantly increased in the samples with 30, 50, 100 kGy irradiated ${\beta}-glucan$. Melanin synthesis of irradiated ${\beta}-glucan$ was measured from B16BL6 melanoma cell line treated with ${\alpha}-melanin$ stimulating hormone. Melanin synthesis was increased in the ${\alpha}-melanin$ stimulating hormone added group. However, it was decreased in the groups of 30, 50 and 100 kGy gamma-irradiated ${\beta}-glucan$ treated with ${\alpha}-melanin$ stimulating hormone. These results indicate that gamma irradiated ${\beta}-glucan$ may elevate the whitening activity. Therefore, gamma-irradiated ${\beta}-glucan$ could be used for nutraceutical foods in cosmetic industry.
The purpose of this study was to evaluate the protective effect of the Perilla frutescens cv. Chookyoupjaso mutant water extract (PFWE) on gamma ray-induced oxidative stress in mice. Gamma-ray is one of the sources for inducing oxidative stress. The study was divided into 6 groups with 6 mice for each treatment. Groups I and II were treated with saline (vehicle) only, groups III, IV, V, and VI were pretreated with PFWE 10, 20, 50, $50mg\;kg^{-1}$ respectively for 2 weeks before gamma radiation. And then groups II, III, IV, V were irradiated. We found that the activities of aspartate transaminase (AST) and alanine transaminase (ALT) were increased and the activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were decreased by irradiation in mice. However, treatment of PFWE attenuated the activities of AST and ALT in a dose-dependent manner in irradiated mice. Furthermore, treatment of PFWE significantly increased the activities of SOD, GPx, and GR in a dose-dependent manner in irradiated mice, except for the CAT. Interestingly, the activities of GPx and GR were significantly increased by PFWE treatment. Taken together, PFWE could be effective in protecting on gamma ray-induced oxidative stress in mice.
This study was carried out to assess the effect of radiation on the changes of Hizikia fusiformis cooking juice ethanol extract and to compare the effect of gamma ray and electron beam. On the applying radiation, the dark color of cooking juice became changed with higher brightness and lower redness and yellowness. But, there was no difference between gamma ray radiation and electron beam radiation. 1,1-Diphenyl-2-picryl-hydrazyl radical scavenging activity and tyrosinase inhibitory activity of cooking juice were shown to be increased by radiation independent on the radiation source types. The reason for the increased biological activities was caused by higher content of total phenolic compounds. The results could be applied to investigate the effect of radiation source on the color and antioxidant activity of biomaterials, and it was thought that irradiation could be an promising method for enhancing the biological activity of biomaterials.
Park, Seo-Hyoung;Kim, Tae-Hwan;Cho, Chul-Koo;Lee, Yeon-Hee
Journal of Microbiology and Biotechnology
/
제11권3호
/
pp.524-528
/
2001
The measurement of radiation response using simple and informative techniques would be of great value in studying the genetic risk following occupational, therapeutic, or accidental exposure to radiation. When patients receive radiation therapy, many suffer from side effects. Since each patient receives a different dose due to different physical conditions, it is important to measure the exact dose of radiation received by each patient to lessen the side effects. Even though several biological dosimetric systems have already been developed, there is no ideal system that can satisfy all the criteria for an idean dosimetric system, especially for low-dose radiation as used in radiation therapy. In this study, an SOS Chromotest of E. coli PQ37 was evaluated as a novel dosimeter for low-dose gamma-rays. E. coli PQ37 was originally developed to screen chemical mutagens using the SOS Chromotest-a colorimtric assay, based on the induction of ${\beta}$-galactosidase ue to DNA damage. The survival fraction of E. coli PQ37 decreased dose-dependently with an increasing dose of cobalt-60 gamma-rays. Also, a good linear correlation was found between the biological damage revealed by the ${\beta}$-galactosidase expression and the doses of gamma-rays. The expression of ${\beta}$-galactosidase activity that responded to low-dose radiation under 1 Gy was $Y=0.404+(0.089{\pm}0.3)D+(-0.018{\pm}0.16)D^2$ (Y, absorbance at 420 nm; D, Dose of irradiation) as calculated using Graph Pad In Plot and Excel. When a rabbit was fed with capsules containing an agar block embdded with E. coli PQ37 showed a linear response to the radiation doses. Accordingly, the results confirm that E. coli PQ37 can be used as a sensitive biological dosimeter fro cobalt-60 gamma-rays. To the best of our knowledge, this is the first time that a bacterium has been used as a biological dosimeter, especially for low-dose radiation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.