• Title/Summary/Keyword: ${\gamma}$-FIB system

Search Result 22, Processing Time 0.029 seconds

Measurement of Secondary Electron Emission Coefficient and Bimolecular Valence Band Energy Structure of Erythrocyte with and Without Bioplasma Treatment

  • Lee, Jin-Young;Baik, Guyon;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.483-483
    • /
    • 2012
  • Recently, nonthermal bioplasma has been attracted by researchers due to their potentials to modulate cellular functions resulting in changes of biomolecular electron band structures as well as cell morphologies. We have investigated the secondary electron emission characteristics from the surface of the erythrocyte, i.e., red blood cell (RBC) with and without the nonthermal bioplasma treatment in morphological and biomolecular aspects. The morphologies have been controlled by osmotic pressure and biomolecular structures were changed by well known reactive oxygen species. Ion-induced secondary electron emission coefficient have been measured by using gamma-focused ion beam (${\gamma}$-FIB) system, based on the quantum mechanical Auger neutralization theory. Our result suggests that the nonthermal bioplasma treatment on biological cells could result in change of the secondary electron emission coefficient characterizing the biomolecular valence band electron energy structures caused by the cell morphologies as well as its surface charge distributions.

  • PDF

A Study on Gamma TiAl Micro-structural Fracture with EBSD Technique (EBSD 기법을 이용한 Gamma TiAl의 마이크로 조직파괴에 관한 연구)

  • Kim, Yun-Hae;Woo, Byung-Hoon;Bae, Chang-Won;Bae, Sung-Yeol;Higo, Yakichi;Moon, Kyung-Man
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.377-384
    • /
    • 2007
  • A backscatter Kikuchi diffraction attachment to an SEM enables the convenient investigation of grain orientations on bulk or micro surface. Their relation to micro structural features gives insight into many aspects of anisotropic materials properties. In micro area such as Micro Electro Mechanical Systems(MEMS) devices is required in order to improve understanding of how they may be expected to perform upon the micro scale. Electro Back Scatter Diffraction (EBSD) helps us to find uniform area as MEMS material. The ${\gamma}-TiAl$ has two different lamellar structures ${\gamma}/{\alpha}2-Ti_3Al$ phase which have shows $\{111\}{\gamma}//\{0001\}{\alpha}2$ plane indexing. The micro size testing specimen was successfully made by this structural relation. Interlamellar structure specimen averagely show $20{\sim}25%$ lower fracture toughness value compare with translamellar specimens Moreover micro fracture surface and micro crack progress were observed.

Secondary Electron Emission Characteristics of Functional Layer in AC-PDP

  • Son, Chang-Gil;Han, Young-Gyu;Kim, Yong-Hee;Cho, Byeong-Seong;Hong, Young-Jun;Song, Ki-Baek;Bae, Young-Joo;Kim, In-Tae;Choi, Eun-Ha
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.736-739
    • /
    • 2009
  • We have studied that the secondary electron emission characteristics of functional layers which have different kinds of MgO sub-micrometer size powder in AC-PDP. We used cathodoluminescence(CL) and gamma focused ion beam (${\gamma}$-FIB) system for measurement of secondary electron emission characteristics. Also we made 6 inch test panel which applied functional layers for evaluation of discharge characteristics.

  • PDF

Ion-induced secondary electron emission coefficient and work function for MgO thin film with $O_2$ plasma treatment

  • Jung, J.C.;Jeong, H.S.;Lee, J.H.;Oh, J.S.;Park, W.B.;Lim, J.Y.;Cho, J.W.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.525-528
    • /
    • 2004
  • The ion-induced secondary electron emission coefficient ${\gamma}$ and work function for MgO thin film with $O_2$ plasma treatment has been investigated by ${\gamma}$ -FIB (focused ion beam) system. The MgO thin film deposited from sintered material with $O_2$ plasma treatment is found to have higher ${\gamma}$ and lower work function than those without $O_2$ plasma treatment. The energy of various ions used has been ranged from 100eV to 200eV throughout this experiment. It is found that the highest secondary electron emission coefficient ${\gamma}$ has been achieved for 10 minutes of $O_2$ plasma treatment under RF power of 50W.

  • PDF

Measurement of secondary electron emission coefficient(${\gamma}$) with oblique low energy ion and work function ${\phi}_{\omega}$ of theMgO thin film in AC-PDPs

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jung, K.B.;Jeon, W.;Cho, G.S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.507-510
    • /
    • 2004
  • Oblique ion-induced secondary electron emission coefficient(${\gamma}$) with low energy ..and work function ${\phi}_{\omega}$(${\theta}$ = 0 and ${\theta}$ = 20) of the MgO thin film in AC-PDPs has been measured by ${\gamma}$-FIB system. The MgO thin film has been deposited from sintered material under electron beam evaporation method. The energy of $He^+$ ions used has been ranged from 50eV to 150eV. Oblique ion beam has been chosen to be 10 degree, 20 degree and 30 degree. It is found that the higher secondary electron emission coefficient(${\gamma}$) has been achieved by the higher oblique ion beam up to inclination angle of 30 degree than the perpendicular incident ion beam.

  • PDF

Influence of surface geometrical structures on the secondary electron emission coefficient $({\gamma})$ of MgO protective layer

  • Park, W.B.;Lim, J.Y.;Oh, J.S.;Jeong, H.S.;Jeong, J.C.;Kim, S.B.;Cho, I.R.;Cho, J.W.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.806-809
    • /
    • 2003
  • Ion-induced secondary electron emission coefficient $({\gamma})$. of the patterned MgO thin film with geometrical structures has been measured by ${\gamma}$ - FIB(focused ion beam) system. The patterned MgO thin film with geometrical structures has been formed by the mask (mesh of ${\sim}$ $10{\mu}m^{2})$ under electron beam evaporation method. It is found that the higher ${\gamma}$. has been achieved by the patterned MgO thin film than the normal ones without patterning.

  • PDF

Influence of vacuum annealing on the secondary electron emission coefficient(${\gamma}$) from a MgO protective layer

  • Jeoung, J.M.;Leem, J.Y.;Cho, T.S.;Choi, M.C.;Ahn, J.C.;Kim, J.G.;Kim, Y.G.;Cho, D.S.;Kim, S.S.;Kim, T.Y.;Choi, S.H.;Chong, M.W.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Kang, S.O.;Cho, G.S.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.113-114
    • /
    • 2000
  • The secondary electron emission coefficient(${\gamma}$) of vacuum annealed MgO films has been investigated by ${\gamma}-focused$ ion beam(${\gamma}-FIB$) system. The vacuum annealed MgO films have been found to have higher ${\gamma}$ values from 0.053 up to 0.121 than those for as-deposited MgO films from 0.026 up to 0.062 for $Ne^+$ ion energies ranged from 50eV to 200eV. Also it is found that ${\gamma}$ for air hold of vacuum annealed MgO layers for 24-hours is similar to that for vacuum annealed MgO films without any air-hold.

  • PDF

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

Sputtering yield and secondary electron emission coefficient ($\gamma$) of the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ thin film grown on the Cu substrate by using the Focused Ion Beam

  • Jung, Kang-Won;Lee, H.J.;Jeong, W.H.;Oh, H.J.;Choi, E.H.;Seo, Y.H.;Kang, S.O.;Park, C.W.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.877-881
    • /
    • 2006
  • We obtained sputtering yields for the MgO, $MgAl_2O_4$ and $MgAl_2O_4/MgO$ films using the FIB system. $MgAl_2O_4/MgO$ protective layers have been found to have less $24^{\sim}^30%$ sputtering yield values from 0.24 atoms/ion up to 0.36 atoms/ion than MgO layers with the values from 0.36 atoms/ion up to 0.45 atoms/ion for irradiated $Ga^+$ ion beam whose energies ranged from 10 keV to 14 keV. And $MgAl_2O_4$ layers have been found to have lowest sputtering yield values from 0.88 up to 0.11. It is also found that $MgAl_2O_4/MgO$ and MgO have secondary electron emission $coefficient({\gamma})$ values from 0.09 up to 0.12 for $Ne^+$ ion whose energies ranged from 50 eV to 200 eV.

  • PDF