• Title/Summary/Keyword: ${\eta}_*$ Einstein manifolds

Search Result 37, Processing Time 0.022 seconds

SOME RESULTS ON (LCS)n-MANIFOLDS

  • Shaikh, Absos Ali
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.449-461
    • /
    • 2009
  • The object of the present paper is to study $(LCS)_n$-manifolds. Several interesting results on a $(LCS)_n$-manifold are obtained. Also the generalized Ricci recurrent $(LCS)_n$-manifolds are studied. The existence of such a manifold is ensured by several non-trivial new examples.

ON A CLASS OF GENERALIZED RECURRENT (k, 𝜇)-CONTACT METRIC MANIFOLDS

  • Khatri, Mohan;Singh, Jay Prakash
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1283-1297
    • /
    • 2020
  • The goal of this paper is the introduction of hyper generalized 𝜙-recurrent (k, 𝜇)-contact metric manifolds and of quasi generalized 𝜙-recurrent (k, 𝜇)-contact metric manifolds, and the investigation of their properties. Their existence is guaranteed by examples.

SOME RESULTS ON PROJECTIVE CURVATURE TENSOR IN SASAKIAN MANIFOLDS

  • Gautam, Umesh Kumar;Haseeb, Abdul;Prasad, Rajendra
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.881-896
    • /
    • 2019
  • In the present paper, we study certain curvature conditions satisfying by the projective curvature tensor in Sasakian manifolds with respect to the generalized-Tanaka-Webster connection. Finally, we give an example of a 3-dimensional Sasakian manifold with respect to the generalized-Tanaka-Webster connection.

RICCI 𝜌-SOLITONS ON 3-DIMENSIONAL 𝜂-EINSTEIN ALMOST KENMOTSU MANIFOLDS

  • Azami, Shahroud;Fasihi-Ramandi, Ghodratallah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.613-623
    • /
    • 2020
  • The notion of quasi-Einstein metric in theoretical physics and in relation with string theory is equivalent to the notion of Ricci soliton in differential geometry. Quasi-Einstein metrics or Ricci solitons serve also as solution to Ricci flow equation, which is an evolution equation for Riemannian metrics on a Riemannian manifold. Quasi-Einstein metrics are subject of great interest in both mathematics and theoretical physics. In this paper the notion of Ricci 𝜌-soliton as a generalization of Ricci soliton is defined. We are motivated by the Ricci-Bourguignon flow to define this concept. We show that if a 3-dimensional almost Kenmotsu Einstein manifold M is a 𝜌-soliton, then M is a Kenmotsu manifold of constant sectional curvature -1 and the 𝜌-soliton is expanding with λ = 2.

CERTAIN CURVATURE CONDITIONS IN KENMOTSU MANIFOLDS

  • Haseeb, Abdul
    • Honam Mathematical Journal
    • /
    • v.42 no.2
    • /
    • pp.331-344
    • /
    • 2020
  • The objective of the present paper is to study certain curvature conditions in Kenmotsu manifolds with respect to the semi-symmetric non-metric connection. Finally, we construct an example of 5-dimensional Kenmotsu manifold with respect to the semi-symmetric non-metric connection to verify some results of the paper.

ON GENERALIZED QUASI-CONFORMAL N(k, μ)-MANIFOLDS

  • Baishya, Kanak Kanti;Chowdhury, Partha Roy
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.163-176
    • /
    • 2016
  • The object of the present paper is to introduce a new curvature tensor, named generalized quasi-conformal curvature tensor which bridges conformal curvature tensor, concircular curvature tensor, projective curvature tensor and conharmonic curvature tensor. Flatness and symmetric properties of generalized quasi-conformal curvature tensor are studied in the frame of (k, ${\mu}$)-contact metric manifolds.

A CLASS OF 𝜑-RECURRENT ALMOST COSYMPLECTIC SPACE

  • Balkan, Yavuz Selim;Uddin, Siraj;Alkhaldi, Ali H.
    • Honam Mathematical Journal
    • /
    • v.40 no.2
    • /
    • pp.293-304
    • /
    • 2018
  • In this paper, we study ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space and prove that it is an ${\eta}$-Einstein manifold with constant coefficients. Next, we show that a three-dimensional locally ${\varphi}$-recurrent almost cosymplectic (${\kappa},{\mu}$)-space is the space of constant curvature.