• Title/Summary/Keyword: ${\epsilon}_0$-complete

Search Result 7, Processing Time 0.02 seconds

ON THE PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE OF NA SEQUENCES

  • Han, Kwang-Hee
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.977-986
    • /
    • 2010
  • Let $X_1$, $X_2$, $\cdots$ be identically distributed negatively associated random variables with $EX_1\;=\;0$ and $E|X_1|^3$ < $\infty$. In this paper we prove $lim_{{\epsilon\downarrow}0}\;\frac{1}{-\log\;\epsilon}\sum\limits_{n=1}^\infty\frac{1}{n^2}ES_n^2I\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;2$ and $lim_{\epsilon\downarrow0}\;\epsilon^{2-p}\sum\limits_{n=1}^\infty\frac{1}{n^p}$ $E|S_n|^pI\{|S_n|\;{\geq}\;{\sigma\epsilon}n\}\;=\;\frac{2}{2-p}$ for 0 < p < 2, where $S_n\;=\;\sum\limits_{i=1}^{n}X_i$ and 0 < $\sigma^2\;=\;EX_1^2\;+\;\sum\limits_{i=2}^{\infty}Cov(X_1,\;X_i)$ < $\infty$. We consider some results of i.i.d. random variables obtained by Liu and Lin(2006) under negative association assumption.

ON THE GENERALIZED BANACH SPACES

  • Kang, Buhyeon
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.707-722
    • /
    • 2019
  • For any non-negative real number ${\epsilon}_0$, we shall introduce a concept of the ${\epsilon}_0$-Cauchy sequence in a normed linear space V and also introduce a concept of the ${\epsilon}_0$-completeness in those spaces. Finally we introduce a concept of the generalized Banach spaces with these concepts.

Precise Rates in Complete Moment Convergence for Negatively Associated Sequences

  • Ryu, Dae-Hee
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.5
    • /
    • pp.841-849
    • /
    • 2009
  • Let {$X_n$, n ${\ge}$ 1} be a negatively associated sequence of identically distributed random variables with mean zeros and positive finite variances. Set $S_n$ = ${\Sigma}^n_{i=1}\;X_i$. Suppose that 0 < ${\sigma}^2=EX^2_1+2{\Sigma}^{\infty}_{i=2}\;Cov(X_1,\;X_i)$ < ${\infty}$. We prove that, if $EX^2_1(log^+{\mid}X_1{\mid})^{\delta}$ < ${\infty}$ for any 0< ${\delta}{\le}1$, then $\lim_{{\epsilon}\downarrow0}{\epsilon}^{2{\delta}}\sum_{{n=2}}^{\infty}\frac{(logn)^{\delta-1}}{n^2}ES^2_nI({\mid}S_n{\mid}\geq{\epsilon}{\sigma}\sqrt{nlogn}=\frac{E{\mid}N{\mid}^{2\delta+2}}{\delta}$, where N is the standard normal random variable. We also prove that if $S_n$ is replaced by $M_n=max_{1{\le}k{\le}n}{\mid}S_k{\mid}$ then the precise rate still holds. Some results in Fu and Zhang (2007) are improved to the complete moment case.

CONDENSATION IN DENSITY DEPENDENT ZERO RANGE PROCESSES

  • Jeon, Intae
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.267-278
    • /
    • 2013
  • We consider zero range processes with density dependent jump rates g given by $g=g(n,k)=g_1(n)g_2(k/n)$ with $g_1(x)=x^{-\alpha}$ and $$g_2(x)=\{^{x^{-\alpha}\;if\;a&lt;x}_{Mx^{-\alpha}\;if\;x{\leq}a}$$. (0.1) In this case, with 1/2 < a < 1 and ${\alpha}$ > 0, we show that non-complete condensation occurs with maximum cluster size an. More precisely, for any ${\epsilon}$ > 0, there exists $M^*$ > 0 such that, for any 0 < M ${\leq}M^*$, the maximum cluster size is between (a - ${\epsilon}$)n and (a + ${\epsilon}$)n for large n. This provides a simple example of non-complete condensation under perturbation of rates which are deep in the range of perfect condensation (e.g. ${\alpha}$ >> 1) and supports the instability of the condensation transition.

PRECISE ASYMPTOTICS IN COMPLETE MOMENT CONVERGENCE FOR DEPENDENT RANDOM VARIABLE

  • Han, Kwang-Hee
    • Honam Mathematical Journal
    • /
    • v.31 no.3
    • /
    • pp.369-380
    • /
    • 2009
  • Let $X,X_1,X_2,\;{\cdots}$ be identically distributed and negatively associated random variables with mean zeros and positive, finite variances. We prove that, if $E{\mid}X_1{\mid}^r$ < ${\infty}$, for 1 < p < 2 and r > $1+{\frac{p}{2}}$, and $lim_{n{\rightarrow}{\infty}}n^{-1}ES^2_n={\sigma}^2$ < ${\infty}$, then $lim_{{\epsilon}{\downarrow}0}{\epsilon}^{{2(r-p}/(2-p)-1}{\sum}^{\infty}_{n=1}n^{{\frac{r}{p}}-2-{\frac{1}{p}}}E\{{{\mid}S_n{\mid}}-{\epsilon}n^{\frac{1}{p}}\}+={\frac{p(2-p)}{(r-p)(2r-p-2)}}E{\mid}Z{\mid}^{\frac{2(r-p)}{2-p}}$, where $S_n\;=\;X_1\;+\;X_2\;+\;{\cdots}\;+\;X_n$ and Z has a normal distribution with mean 0 and variance ${\sigma}^2$.

Complete Moment Convergence of Moving Average Processes Generated by Negatively Associated Sequences

  • Ko, Mi-Hwa
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.4
    • /
    • pp.507-513
    • /
    • 2010
  • Let {$X_i,-{\infty}$ < 1 < $\infty$} be a doubly infinite sequence of identically distributed and negatively associated random variables with mean zero and finite variance and {$a_i,\;-{\infty}$ < i < ${\infty}$} be an absolutely summable sequence of real numbers. Define a moving average process as $Y_n={\sum}_{i=-\infty}^{\infty}a_{i+n}X_i$, n $\geq$ 1 and $S_n=Y_1+{\cdots}+Y_n$. In this paper we prove that E|$X_1$|$^rh$($|X_1|^p$) < $\infty$ implies ${\sum}_{n=1}^{\infty}n^{r/p-2-q/p}h(n)E{max_{1{\leq}k{\leq}n}|S_k|-{\epsilon}n^{1/p}}{_+^q}<{\infty}$ and ${\sum}_{n=1}^{\infty}n^{r/p-2}h(n)E{sup_{k{\leq}n}|k^{-1/p}S_k|-{\epsilon}}{_+^q}<{\infty}$ for all ${\epsilon}$ > 0 and all q > 0, where h(x) > 0 (x > 0) is a slowly varying function, 1 ${\leq}$ p < 2 and r > 1 + p/2.

ALMOST SURE MARCINKIEWICZ TYPE RESULT FOR THE ASYMPTOTICALLY NEGATIVELY DEPENDENT RANDOM FIELDS

  • Kim, Hyun-Chull
    • Honam Mathematical Journal
    • /
    • v.31 no.4
    • /
    • pp.505-513
    • /
    • 2009
  • Let {$X_k;k{\in}N^d$} be centered and identically distributed random field which is asymptotically negative dependent in a certain case. In this note we prove that for $p{\alpha}$ > 1 and ${\alpha}$ > ${\frac{1}{2}}$ $E{\mid}X_1{\mid}^p(log^+{\mid}X_1{\mid}^{d-1})$ < ${\infty}$ if and only if ${\sum}_n{\mid}n{\mid}^{p{\alpha}-2}P$($max_{1{\leq}k{\leq}n{\mid}S_k{\mid}}$ > ${\epsilon}{\mid}n{\mid}$) < ${\infty}$ for all ${\epsilon}$ > 0, where log$^+$x = max{1,log x}.