• Title/Summary/Keyword: ${\beta}-Glucosidase$

Search Result 522, Processing Time 0.036 seconds

Highly Selective Production of Compound K from Ginsenoside Rd by Hydrolyzing Glucose at C-3 Glycoside Using β-Glucosidase of Bifidobacterium breve ATCC 15700

  • Zhang, Ru;Huang, Xue-Mei;Yan, Hui-Juan;Liu, Xin-Yi;Zhou, Qi;Luo, Zhi-Yong;Tan, Xiao-Ning;Zhang, Bian-Ling
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.410-418
    • /
    • 2019
  • To investigate a novel ${\beta}$-glucosidase from Bifidobacterium breve ATCC 15700 (BbBgl) to produce compound K (CK) via ginsenoside $F_2$ by highly selective and efficient hydrolysis of the C-3 glycoside from ginsenoside Rd, the BbBgl gene was cloned and expressed in E. coli BL21. The recombinant BbBgl was purified by Ni-NTA magnetic beads to obtain an enzyme with specific activity of 37 U/mg protein using pNP-Glc as substrate. The enzyme activity was optimized at pH 5.0, $35^{\circ}C$, 2 or 6 U/ml, and its activity was enhanced by $Mn^{2+}$ significantly. Under the optimal conditions, the half-life of the BbBgl is 180 h, much longer than the characterized ${\beta}$-glycosidases, and the $K_m$ and $V_{max}$ values are 2.7 mM and $39.8{\mu}mol/mg/min$ for ginsenoside Rd. Moreover, the enzyme exhibits strong tolerance against high substrate concentration (up to 40 g/l ginsenoside Rd) with a molar biotransformation rate of 96% within 12 h. The good enzymatic properties and gram-scale conversion capacity of BbBgl provide an attractive method for large-scale production of rare ginsenoside CK using a single enzyme or a combination of enzymes.

Evaluation of Cellulolytic Enzyme Production by Indigenous Fungi in Korea

  • Lee, Hanbyul;Lee, Young Min;Heo, Young Mok;Lee, Jaejung;Kim, Jae-Jin
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.648-653
    • /
    • 2017
  • The aim of this study was to select various fungal strains indigenous to Korea that have the potential to produce cellulases, including filter paper activity (FPase), $endo-{\beta}$-1,4-glucanase (EG), and ${\beta}-glucosidase$ (BGL). Among the 25 species of Ascomycetes and the 32 species of Basidiomycetes tested in this study, the Bjerkandera adusta KUC10565, Heterobasidion orientale KUC10556, Hyphoderma praetermissum KUC10609, and Trichoderma harzianum KUC1716 all exhibited remarkably high FPase activity. In addition, the T. harzianum KUC1716 showed high levels of EG and BGL activity. This strain has been selected for further study because of their enzymatic potential.

Fungal Diversity and Enzyme Activity Associated with the Macroalgae, Agarum clathratum

  • Lee, Seobihn;Park, Myung Soo;Lee, Hanbyul;Kim, Jae-Jin;Eimes, John A.;Lim, Young Woon
    • Mycobiology
    • /
    • v.47 no.1
    • /
    • pp.50-58
    • /
    • 2019
  • Agarum clathratum, a brown macroalgae species, has recently become a serious environmental problem on the coasts of Korea. In an effort to solve this problem, fungal diversity associated with decaying A. clathratum was investigated and related ${\beta}$-glucosidase and endoglucanase activities were described. A total of 233 fungal strains were isolated from A. clathratum at 15 sites and identified 89 species based on morphology and a multigene analysis using the internal transcribed spacer region (ITS) and protein-coding genes including actin (act), ${\beta}$-tubulin (benA), calmodulin (CaM), and translation elongation factor (tef1). Acremonium, Corollospora, and Penicillium were the dominant genera, and Acremonium fuci and Corollospora gracilis were the dominant species. Fifty-one species exhibited cellulase activity, with A. fuci, Alfaria terrestris, Hypoxylon perforatum, P. madriti, and Pleosporales sp. Five showing the highest enzyme activities. Further enzyme quantification confirmed that these species had higher cellulase activity than P. crysogenum, a fungal species described in previous studies. This study lays the groundwork for bioremediation using fungi to remove decaying seaweed from populated areas and provides important background for potential industrial applications of environmentally friendly processes.

Korean-Style No-tillage Organic Agriculture on Recycled Ridge IV. Changes in Soil Microorganisms and Enzymes by Split Irrigation and Organic Matter Application in Organic Farming of Red Pepper in Plastic Film Greenhouse (두둑을 재활용한 한국형 무경운 유기 농업 IV. 분할관수와 유기물처리에 의한 시설 고추 유기재배 토양 미생물상과 토양 효소의 변화)

  • Yang, Seung-Koo;Shin, Kil-Ho;Song, Yong-Su;Kim, Kil-Yong;Jung, Woo-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.311-328
    • /
    • 2017
  • This study was carried out to investigate the changes in soil microorganisms and soil enzymes by split irrigation and organic matter application under no-tillage green house conditions. Soil bacteria and fungi abundances were higher in soybean cake fertilizer than in the soil without the soybean cake fertilizer under whole quantity irrigation. Bacteria and fungi abundances in soil increased with increasing organic fertilizer application rate. Bacteria and fungi amount in the soil increased at half division irrigation in no-treatment of soybean cake fertilizer compared with whole quantity irrigation. Actinomycete amount in the soil decreased with increasing soybean cake fertilizer with whole quantity irrigation while clearly increased in no-treatment of soybean cake fertilizer. Actinomycete amount in soil clearly increased with increasing organic fertilizer input at half division irrigation. Chitinase activity in the soil decreased in soybean cake fertilizer with increasing organic fertilizer input, while increased in no-treatment of soybean cake fertilizer. Chitinase activity in the soil increased at half division irrigation compared with whole quantity irrigation regardless of soybean cake fertilizer input. ${\beta}$-Glucosidase activity in the soil was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. ${\beta}$-Glucosidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. ${\beta}$-Glucosidase activity in the soil clearly increased in no-treatment of soybean cake fertilizer at half division irrigation compared with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity was higher in soybean cake fertilizer than in no-treatment of soybean cake fertilizer with whole quantity irrigation. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil increased with increasing organic fertilizer input, but decreased in above the standard level 66%. N-acetyl-${\beta}$-D-glucosaminidase activity in the soil was not significantly different at half division irrigation and whole quantity irrigation in organic fertilizer input, while increased at half division irrigation in no-treatment of soybean cake fertilizer. Acid phosphatase activity increased at standard level 66% in soybean cake fertilizer, while was not significantly different in no-treatment of soybean cake fertilizer. Spore density of Arbuscular Mycorrhizal Fungi (AMF) in the soil increased with increasing organic fertilizer input at whole quantity irrigation in no-treatment of soybean cake fertilizer, while decreased above the standard level 66% in organic fertilizer input. However, spore density of AMF in the soil was not significantly different in soybean cake fertilizer regardless of input amount of organic fertilizer. Root colonization rate of AMF in red pepper roots was not significant difference at two irrigations regardless of soybean cake input.

Hydrothermal Pretreatment of Ulva pertusa Kjellman Using Microwave Irradiation for Enhanced Enzymatic Hydrolysis (구멍갈파래의 효소 가수분해 증진을 위한 마이크로파 이용 열수 전처리)

  • Kim, Jungmin;Ha, Sung Ho
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.570-575
    • /
    • 2015
  • The green algae have cellulose as a main structural component of their cell wall and the cellulose content in green algae is much higher than other marine algae such as brown algae and red algae. Furthermore, green algae do not contain lignin in their cell wall and store starch as food in their plastids. Thus, it was investigated that the effect of hydrothermal pretreatment process utilizing microwave irradiation for Ulva pertusa Kjellman, a division of green algae, which is expected to be utilized for bioenergy production, on the enzymatic hydrolysis. The hydrothermal temperature have an effect on the pretreatment of Ulva pertusa Kjellman, but the effect of power of microwave irradiation is negligible. The rate of enzymatic hydrolysis was increased as the hydrothermal temperature increased until $140^{\circ}C$. The enzymatic hydrolysis of pretreated Ulva pertusa Kjellman under the optimum pretreatment conditions (50 W of microwave irradiation power and $150^{\circ}C$ of hydrothermal temperature) with cellulase, ${\alpha}$-amylase, and Novozyme 188 having ${\beta}$-glucosidase acitivity resulted in the saccharification of 96 wt% of total carbohydrate in Ulva pertusa Kjellman during 3 hrs, while it took 24 hrs for the enzymatic hydrolysis of untreated Ulva pertusa Kjellman. It confirmed that the hydrothermal pretreatment was effective on Ulva pertusa Kjellman for the enzymatic hydrolysis.

Physico-chemical Characteristics of Dua-Chungkukjang (두아 청국장의 이화학적 특성)

  • Park, Seok-Kyu;Ryu, Cha-Yeol;Lee, Sang-Won
    • Journal of Life Science
    • /
    • v.19 no.9
    • /
    • pp.1271-1276
    • /
    • 2009
  • Unlike the traditional preparation method for Chungkukjang, we prepared Dua-Chungkukjang with soybean fermented at $40^{\circ}C$ after the soaking, germination and steaming process, and we studied the physico-chemical characteristics of Dua-Chungkukjang. Reducing sugar content in both traditional Chungkukjang and Dua-Chungkukjang increased sharply after 10 hr of fermentation, but it decreased slightly after that. Total nitrogen content in both traditional Chungkukjang and Dua-Chungkukjang increased slowly as fermentation took place. Total nitrogen content reached 3,500 mg% and 3,700 mg%, and soluble nitrogen compound reached 750 mg% and 1,800 mg% after 40 hr of fermentation, respectively. $\beta$-Glucosidase activity increased continuously as fermentation took place, and it reached 193, 223, 235 and 248 units in Dua-Chungkukjang while it reached 125, 178, 205 and 214 units in traditional Chungkukjang after 10 hr, 20 hr, 30 hr and 40 hr of fermentation. This means that $\beta$-Glucosidase activity in Dua-Chungkukjang was $1.2{\sim}1.5$ times higher than that in the control treatment, traditional Chungkukjang. Total isoflavone content was $101.44{\mu}g$/g and $365.92{\mu}g$/g for 10 hr of fermentation, and $225.98{\mu}g$/g and $441.37{\mu}g$/g for 40 hr in traditional Chungkukjang and Dua-Chungkukjang, respectively. Isoflavone content of Dua-Chungkukjang was 2-3.5 times higher than that of traditional Chungkukjang. Anthocyanin content also increased continuously as fermentation took place, and it reached 5.0 mg/g and 6.9 mg/g in traditional Chungkukjang and Dua-Chungkukjang after 40 hr of fermentation, respectively.

Changes in Phenolic Compounds and Radical Scavenging Activity of Doenjang Prepared by Fermentation with Bacillus Subtilis HJ18-9 (Bacillus subtilis HJ18-9로 제조한 된장의 페놀성분 및 라디칼 소거 활성의 변화)

  • Lee, Kyung Ha;Song, Jin;Jang, Yeon Jeong;Lee, Eun Jun;Kim, Hyun Joo;Oh, Sea Kwan;Woo, Koan Sik
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.6
    • /
    • pp.843-850
    • /
    • 2016
  • This study was conducted to investigate changes in isoflavone composition (glycosides and bio-active aglycones) and evaluate the quality characteristics of doenjang prepared using different Bacillus strains (KACC15935 and HJ18-9). After 60 days of fermentation, ${\beta}-glucosidase$ activity of doenjang fermented with B. subtilis HJ18-9 was higher than those of other samples. Contents of aglycones (daidzein, genistein, and glycitein) in B. subtilis HJ18-9 significantly increased up to $703.90{\pm}11.09{\mu}g/g$. In addition, total phenolic content and 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity increased markedly during fermentation. These results suggest that fermentation with B. subtilis could be used to increase ${\beta}-glucosidase$ activity with a view towards development of functional foods.

Purification and Characterization of Cellulolytic Enzymes from Aspergillus niger (Aspergillus niger가 생산(生産)하는 섬유소(纖維素) 분해효소(分解酵素)의 정제(精製) 및 특성(特性))

  • Park, Kwan-Hwa;Oh, Tae-Kwang;Shin, Jae-Doo
    • Applied Biological Chemistry
    • /
    • v.24 no.3
    • /
    • pp.186-193
    • /
    • 1981
  • Three fractions of carboxymethyl-cellulase (F-I, F-II, and F-III) and ${\beta}-glucosidase$ form Aspergillus niger were partially purified by ammonium sulfate fractionation. Sephadex G-150 and DEAE-Sephadex column chromatography. The optimum conditions such as pH and temperature and thermal inactivation properties of the enzymes were investigated. Arrhenius plots of F-II and F-III appeared as straight lines, whereas that of F-I was biphasic. The Z-values of F-II and F-III were $8^{\circ}C$ and $10^{\circ}C$ respectively, while that of F-I was $4^{\circ}C$ over $60{\sim}70^{\circ}C$ and $383^{\circ}C$ over $70{\sim}98^{\circ}C$. Three fractions and the crude extract of carboxymethyl-cellulase exhibited a similar optimum pH 4.3 and temperature of $60^{\circ}C$, while Z-value of crude extract $(21.5^{\circ}C)$ was much higher than that of the purified enzyme. Maximum activity of both purified and crude extract of ${\beta}-glucosidase$ was shown at pH 4.7 and $60^{\circ}C$, and z-value of the enzyme was $7^{\circ}C$.

  • PDF

Characteristics of yeast with low temperature adaptation for Yakju brewed (약주 제조를 위한 저온 적응성 효모의 특성)

  • Seo, Dong-Jun;Yeo, Soo-Hwan;Mun, Ji-Young;Jung, Woo-Jin;Cho, Yong Sik;Baek, Seong Yeol
    • Food Science and Preservation
    • /
    • v.22 no.6
    • /
    • pp.908-914
    • /
    • 2015
  • The objectives of this study were to isolate and characterize low temperature adaptation yeast and to obtain suitable yeasts strains for manufacturing Yakju. In this study, we isolated 482 wild yeasts from fermented foods. Out of these, 5 yeast strains were selected based on increased growth at low temperature ($15^{\circ}C$) and high ${\beta}$-glucosidase activity. To screen the aromatic level of isolates, media containing cerulenin and 5,5,5-trifluor-DL-leucine (TFL) were used. Y297 strain demonstrated tolerance against TFL and produced more than 13% alcohol. Y297 strain was identified a Saccharomyces cerevisiae based on the 26S rDNA gene sequences. Maximum cell growth was observed after 19 hr and 38 hr of incubation at $25^{\circ}C$ and $15^{\circ}C$, respectively. The exponential phase was followed by a lengthy stationary phase, at $15^{\circ}C$, when the cells remained high viable. Y297 strain demonstrated tolerance against alcohol (10%), glucose (60%) and salt(NaCl, 8%). ${\beta}$-glucosidase and esterase activity in Y297 were higher than those of controls at $15^{\circ}C$. Overall, these results indicated that using wild yeast strain, isolated from fermented food, affects the chemical characteristics of the brewed Yakju.

Change in phytoestrogen contents and antioxidant activity during fermentation of Cheonggukjang with bitter melon (여주 첨가 청국장 발효 중 phytoestrogen 함량 및 항산화 활성 변화)

  • Cho, Kye-Man;Joo, Ok-Soo
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.119-128
    • /
    • 2015
  • In this study, the ${\beta}$-glucosidase activity and total phenolic and isoflavone contents and antioxidant activities during Cheonggukjang fermentation with bitter melon powder (BMP) were investigated and evaluation of the same was performed. The level of ${\beta}$-glucosidase activity was increased at 48 hr and decreased after 72 hr, and the total phenolic and isoflavone-malonylglycoside and aglycone contents increased, while the antioxidant activities increased, but the total isoflavone and isoflavone-glycoside contents decreased during the Cheonggukjang fermentation. In particular, the soybean with 5% BMP fermented at $37^{\circ}C$ for 72 hr displayed the highest antioxidant activities, among all the samples. The highest levels of total phenolic and daidzein contents and DPPH radical scavenging activity, ABTS radical scavenging activity and FRAP assay results after 72 hr fermentation in Cheonggukjang with 5% BMP were found to be 13.5 mg/g, $390.57{\mu}g/g$, 90.74%, 99.79%, and 1.705 (OD593 nm) respectively. In addition, the more BMP was added to the Cheoggukjang, the more the off-odor of the Cheonggukjang decreased. These results suggest that BMP can be used to come up with a new type of Cheonggukjang with improved palatability and antioxidant activity.